Models, code, and papers for "Bennett A":

The Interaction of Entropy-Based Discretization and Sample Size: An Empirical Study

Jan 06, 2012
Casey Bennett

An empirical investigation of the interaction of sample size and discretization - in this case the entropy-based method CAIM (Class-Attribute Interdependence Maximization) - was undertaken to evaluate the impact and potential bias introduced into data mining performance metrics due to variation in sample size as it impacts the discretization process. Of particular interest was the effect of discretizing within cross-validation folds averse to outside discretization folds. Previous publications have suggested that discretizing externally can bias performance results; however, a thorough review of the literature found no empirical evidence to support such an assertion. This investigation involved construction of over 117,000 models on seven distinct datasets from the UCI (University of California-Irvine) Machine Learning Library and multiple modeling methods across a variety of configurations of sample size and discretization, with each unique "setup" being independently replicated ten times. The analysis revealed a significant optimistic bias as sample sizes decreased and discretization was employed. The study also revealed that there may be a relationship between the interaction that produces such bias and the numbers and types of predictor attributes, extending the "curse of dimensionality" concept from feature selection into the discretization realm. Directions for further exploration are laid out, as well some general guidelines about the proper application of discretization in light of these results.

  Access Model/Code and Paper
Artificial Intelligence for Diabetes Case Management: The Intersection of Physical and Mental Health

Oct 06, 2018
Casey C. Bennett

Diabetes is a major public health problem in the United States, affecting roughly 30 million people. Diabetes complications, along with the mental health comorbidities that often co-occur with them, are major drivers of high healthcare costs, poor outcomes, and reduced treatment adherence in diabetes. Here, we evaluate in a large state-wide population whether we can use artificial intelligence (AI) techniques to identify clusters of patient trajectories within the broader diabetes population in order to create cost-effective, narrowly-focused case management intervention strategies to reduce development of complications. This approach combined data from: 1) claims, 2) case management notes, and 3) social determinants of health from ~300,000 real patients between 2014 and 2016. We categorized complications as five types: Cardiovascular, Neuropathy, Opthalmic, Renal, and Other. Modeling was performed combining a variety of machine learning algorithms, including supervised classification, unsupervised clustering, natural language processing of unstructured care notes, and feature engineering. The results showed that we can predict development of diabetes complications roughly 83.5% of the time using claims data or social determinants of health data. They also showed we can reveal meaningful clusters in the patient population related to complications and mental health that can be used to cost-effective screening program, reducing the number of patients to be screened down by 85%. This study outlines creation of an AI framework to develop protocols to better address mental health comorbidities that lead to complications development in the diabetes population. Future work is described that outlines potential lines of research and the need for better addressing the 'people side' of the equation.

* Keywords: Artificial Intelligence; Medical Decision Making; Machine Learning; Diabetes; Case Management; Mental Health 

  Access Model/Code and Paper
How human judgment impairs automated deception detection performance

Mar 30, 2020
Bennett Kleinberg, Bruno Verschuere

Background: Deception detection is a prevalent problem for security practitioners. With a need for more large-scale approaches, automated methods using machine learning have gained traction. However, detection performance still implies considerable error rates. Findings from other domains suggest that hybrid human-machine integrations could offer a viable path in deception detection tasks. Method: We collected a corpus of truthful and deceptive answers about participants' autobiographical intentions (n=1640) and tested whether a combination of supervised machine learning and human judgment could improve deception detection accuracy. Human judges were presented with the outcome of the automated credibility judgment of truthful and deceptive statements. They could either fully overrule it (hybrid-overrule condition) or adjust it within a given boundary (hybrid-adjust condition). Results: The data suggest that in neither of the hybrid conditions did the human judgment add a meaningful contribution. Machine learning in isolation identified truth-tellers and liars with an overall accuracy of 69%. Human involvement through hybrid-overrule decisions brought the accuracy back to the chance level. The hybrid-adjust condition did not deception detection performance. The decision-making strategies of humans suggest that the truth bias - the tendency to assume the other is telling the truth - could explain the detrimental effect. Conclusion: The current study does not support the notion that humans can meaningfully add to the deception detection performance of a machine learning system.

  Access Model/Code and Paper
Efficient Policy Learning from Surrogate-Loss Classification Reductions

Feb 12, 2020
Andrew Bennett, Nathan Kallus

Recent work on policy learning from observational data has highlighted the importance of efficient policy evaluation and has proposed reductions to weighted (cost-sensitive) classification. But, efficient policy evaluation need not yield efficient estimation of policy parameters. We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning with any score function, either direct, inverse-propensity weighted, or doubly robust. We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters. We draw a contrast to actual (possibly weighted) binary classification, where correct specification implies a parametric model, while for policy learning it only implies a semiparametric model. In light of this, we instead propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters. We propose a particular method based on recent developments on solving moment problems using neural networks and demonstrate the efficiency and regret benefits of this method empirically.

  Access Model/Code and Paper
Examining UK drill music through sentiment trajectory analysis

Nov 04, 2019
Bennett Kleinberg, Paul McFarlane

This paper presents how techniques from natural language processing can be used to examine the sentiment trajectories of gang-related drill music in the United Kingdom (UK). This work is important because key public figures are loosely making controversial linkages between drill music and recent escalations in youth violence in London. Thus, this paper examines the dynamic use of sentiment in gang-related drill music lyrics. The findings suggest two distinct sentiment use patterns and statistical analyses revealed that lyrics with a markedly positive tone attract more views and engagement on YouTube than negative ones. Our work provides the first empirical insights into the language use of London drill music, and it can, therefore, be used in future studies and by policymakers to help understand the alleged drill-gang nexus.

  Access Model/Code and Paper
Policy Evaluation with Latent Confounders via Optimal Balance

Aug 06, 2019
Andrew Bennett, Nathan Kallus

Evaluating novel contextual bandit policies using logged data is crucial in applications where exploration is costly, such as medicine. But it usually relies on the assumption of no unobserved confounders, which is bound to fail in practice. We study the question of policy evaluation when we instead have proxies for the latent confounders and develop an importance weighting method that avoids fitting a latent outcome regression model. We show that unlike the unconfounded case no single set of weights can give unbiased evaluation for all outcome models, yet we propose a new algorithm that can still provably guarantee consistency by instead minimizing an adversarial balance objective. We further develop tractable algorithms for optimizing this objective and demonstrate empirically the power of our method when confounders are latent.

  Access Model/Code and Paper
Facility Locations Utility for Uncovering Classifier Overconfidence

Oct 12, 2018
Karsten Maurer, Walter Bennette

Assessing the predictive accuracy of black box classifiers is challenging in the absence of labeled test datasets. In these scenarios we may need to rely on a human oracle to evaluate individual predictions; presenting the challenge to create query algorithms to guide the search for points that provide the most information about the classifier's predictive characteristics. Previous works have focused on developing utility models and query algorithms for discovering unknown unknowns --- misclassifications with a predictive confidence above some arbitrary threshold. However, if misclassifications occur at the rate reflected by the confidence values, then these search methods reveal nothing more than a proper assessment of predictive certainty. We are unable to properly mitigate the risks associated with model deficiency when the model's confidence in prediction exceeds the actual model accuracy. We propose a facility locations utility model and corresponding greedy query algorithm that instead searches for overconfident unknown unknowns. Through robust empirical experiments we demonstrate that the greedy query algorithm with the facility locations utility model consistently results in oracle queries with superior performance in discovering overconfident unknown unknowns than previous methods.

  Access Model/Code and Paper
ChESS - Quick and Robust Detection of Chess-board Features

Jan 23, 2013
Stuart Bennett, Joan Lasenby

Localization of chess-board vertices is a common task in computer vision, underpinning many applications, but relatively little work focusses on designing a specific feature detector that is fast, accurate and robust. In this paper the `Chess-board Extraction by Subtraction and Summation' (ChESS) feature detector, designed to exclusively respond to chess-board vertices, is presented. The method proposed is robust against noise, poor lighting and poor contrast, requires no prior knowledge of the extent of the chess-board pattern, is computationally very efficient, and provides a strength measure of detected features. Such a detector has significant application both in the key field of camera calibration, as well as in Structured Light 3D reconstruction. Evidence is presented showing its robustness, accuracy, and efficiency in comparison to other commonly used detectors both under simulation and in experimental 3D reconstruction of flat plate and cylindrical objects

  Access Model/Code and Paper
Rethinking Generalisation

Nov 11, 2019
Antonia Marcu, Adam Prügel-Bennett

In this paper, we present a new approach to computing the generalisation performance assuming that the distribution of risks, $\rho(r)$, for a learning scenario is known. This allows us to compute the expected error of a learning machine using empirical risk minimisation. We show that it is possible to obtain results for both classification and regression. We show a critical quantity in determining the generalisation performance is the power-law behaviour of $\rho(r)$ around its minimum value. We compute $\rho(r)$ for the case of all Boolean functions and for the perceptron. We start with a simplistic analysis but then do a more formal one later on. We show that the simplistic results are qualitatively correct and provide a good approximation to the actual results if we replace the true training set size with an approximate training set size.

  Access Model/Code and Paper
What is the Point of Fairness? Disability, AI and The Complexity of Justice

Aug 09, 2019
Cynthia L. Bennett, Os Keyes

Work integrating conversations around AI and Disability is vital and valued, particularly when done through a lens of fairness. Yet at the same time, analyzing the ethical implications of AI for disabled people solely through the lens of a singular idea of "fairness" risks reinforcing existing power dynamics, either through reinforcing the position of existing medical gatekeepers, or promoting tools and techniques that benefit otherwise-privileged disabled people while harming those who are rendered outliers in multiple ways. In this paper we present two case studies from within computer vision - a subdiscipline of AI focused on training algorithms that can "see" - of technologies putatively intended to help disabled people but, through failures to consider structural injustices in their design, are likely to result in harms not addressed by a "fairness" framing of ethics. Drawing on disability studies and critical data science, we call on researchers into AI ethics and disability to move beyond simplistic notions of fairness, and towards notions of justice.

  Access Model/Code and Paper
A Precision Environment-Wide Association Study of Hypertension via Supervised Cadre Models

Aug 14, 2018
Alexander New, Kristin P. Bennett

We consider the problem in precision health of grouping people into subpopulations based on their degree of vulnerability to a risk factor. These subpopulations cannot be discovered with traditional clustering techniques because their quality is evaluated with a supervised metric: the ease of modeling a response variable over observations within them. Instead, we apply the supervised cadre model (SCM), which does use this metric. We extend the SCM formalism so that it may be applied to multivariate regression and binary classification problems. We also develop a way to use conditional entropy to assess the confidence in the process by which a subject is assigned their cadre. Using the SCM, we generalize the environment-wide association study (EWAS) workflow to be able to model heterogeneity in population risk. In our EWAS, we consider more than two hundred environmental exposure factors and find their association with diastolic blood pressure, systolic blood pressure, and hypertension. This requires adapting the SCM to be applicable to data generated by a complex survey design. After correcting for false positives, we found 25 exposure variables that had a significant association with at least one of our response variables. Eight of these were significant for a discovered subpopulation but not for the overall population. Some of these associations have been identified by previous researchers, while others appear to be novel associations. We examine several learned subpopulations in detail, and we find that they are interpretable and that they suggest further research questions.

* 17 pages, 4 figures 

  Access Model/Code and Paper
Extended Formulations for Online Linear Bandit Optimization

Sep 30, 2015
Shaona Ghosh, Adam Prugel-Bennett

On-line linear optimization on combinatorial action sets (d-dimensional actions) with bandit feedback, is known to have complexity in the order of the dimension of the problem. The exponential weighted strategy achieves the best known regret bound that is of the order of $d^{2}\sqrt{n}$ (where $d$ is the dimension of the problem, $n$ is the time horizon). However, such strategies are provably suboptimal or computationally inefficient. The complexity is attributed to the combinatorial structure of the action set and the dearth of efficient exploration strategies of the set. Mirror descent with entropic regularization function comes close to solving this problem by enforcing a meticulous projection of weights with an inherent boundary condition. Entropic regularization in mirror descent is the only known way of achieving a logarithmic dependence on the dimension. Here, we argue otherwise and recover the original intuition of exponential weighting by borrowing a technique from discrete optimization and approximation algorithms called `extended formulation'. Such formulations appeal to the underlying geometry of the set with a guaranteed logarithmic dependence on the dimension underpinned by an information theoretic entropic analysis.

  Access Model/Code and Paper
Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach

Jan 10, 2013
Casey C. Bennett, Kris Hauser

In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This serves two potential functions: 1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and 2) the basis for clinical artificial intelligence - an AI that can think like a doctor. This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans. This framework was evaluated using real patient data from an electronic health record. Such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare (Cost per Unit Change: $189 vs. $497) while obtaining a 30-35% increase in patient outcomes. Tweaking certain model parameters further enhances this advantage, obtaining roughly 50% more improvement for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal decisions even in complex and uncertain environments. Future work is described that outlines potential lines of research and integration of machine learning algorithms for personalized medicine.

* Artificial Intelligence in Medicine. 57(1): 9-19. (2013) 
* Keywords: Markov Decision Process; Dynamic Decision Network; Multi-Agent System; Clinical Artificial Intelligence; Medical Decision Making; Chronic Illness; (2013) Artificial Intelligence in Medicine 

  Access Model/Code and Paper
Deep Generalized Method of Moments for Instrumental Variable Analysis

May 29, 2019
Andrew Bennett, Nathan Kallus, Tobias Schnabel

Instrumental variable analysis is a powerful tool for estimating causal effects when randomization or full control of confounders is not possible. The application of standard methods such as 2SLS, GMM, and more recent variants are significantly impeded when the causal effects are complex, the instruments are high-dimensional, and/or the treatment is high-dimensional. In this paper, we propose the DeepGMM algorithm to overcome this. Our algorithm is based on a new variational reformulation of GMM with optimal inverse-covariance weighting that allows us to efficiently control very many moment conditions. We further develop practical techniques for optimization and model selection that make it particularly successful in practice. Our algorithm is also computationally tractable and can handle large-scale datasets. Numerical results show our algorithm matches the performance of the best tuned methods in standard settings and continues to work in high-dimensional settings where even recent methods break.

  Access Model/Code and Paper
Mining Public Opinion about Economic Issues: Twitter and the U.S. Presidential Election

Feb 06, 2018
Amir Karami, London S. Bennett, Xiaoyun He

Opinion polls have been the bridge between public opinion and politicians in elections. However, developing surveys to disclose people's feedback with respect to economic issues is limited, expensive, and time-consuming. In recent years, social media such as Twitter has enabled people to share their opinions regarding elections. Social media has provided a platform for collecting a large amount of social media data. This paper proposes a computational public opinion mining approach to explore the discussion of economic issues in social media during an election. Current related studies use text mining methods independently for election analysis and election prediction; this research combines two text mining methods: sentiment analysis and topic modeling. The proposed approach has effectively been deployed on millions of tweets to analyze economic concerns of people during the 2012 US presidential election.

  Access Model/Code and Paper
EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect

Apr 22, 2012
Casey Bennett, Tom Doub, Rebecca Selove

Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data - the challenge is turning that data into useful information. Furthermore, EHRs are increasingly likely to include data relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses to treatment over time. Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient treatment response. Multiple models were constructed using predictor variables derived from clinical, financial and geographic data. Results: For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change in clinical condition. Based on modeling of various clinical indicators at baseline, the highest accuracy in predicting individual patient response ranged from 70-72% within the models tested. In terms of individual predictors, the Centerstone Assessment of Recovery Level - Adult (CARLA) baseline score was most significant in predicting outcome over time (odds ratio 4.1 + 2.27). Other variables with consistently significant impact on outcome included payer, diagnostic category, location and provision of case management services. Conclusions: This approach represents a promising avenue toward reducing the current gap between research and practice across healthcare, developing data-driven clinical decision support based on real-world populations, and serving as a component of embedded clinical artificial intelligences that "learn" over time.

* Health Policy and Technology 1(2): 105-114 (2012) 
* Keywords: Data Mining; Decision Support Systems, Clinical; Electronic Health Records; Implementation; Evidence-Based Medicine; Data Warehouse; (2012). EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect. Health Policy and Technology. arXiv admin note: substantial text overlap with arXiv:1112.1668 

  Access Model/Code and Paper
Deep Set Prediction Networks

Jun 15, 2019
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

We study the problem of predicting a set from a feature vector with a deep neural network. Existing approaches ignore the set structure of the problem and suffer from discontinuity issues as a result. We propose a general model for predicting sets that properly respects the structure of sets and avoids this problem. With a single feature vector as input, we show that our model is able to auto-encode point sets, predict bounding boxes of the set of objects in an image, and predict the attributes of these objects in an image.

  Access Model/Code and Paper
A Variational Autoencoder for Probabilistic Non-Negative Matrix Factorisation

Jun 13, 2019
Steven Squires, Adam Prügel Bennett, Mahesan Niranjan

We introduce and demonstrate the variational autoencoder (VAE) for probabilistic non-negative matrix factorisation (PAE-NMF). We design a network which can perform non-negative matrix factorisation (NMF) and add in aspects of a VAE to make the coefficients of the latent space probabilistic. By restricting the weights in the final layer of the network to be non-negative and using the non-negative Weibull distribution we produce a probabilistic form of NMF which allows us to generate new data and find a probability distribution that effectively links the latent and input variables. We demonstrate the effectiveness of PAE-NMF on three heterogeneous datasets: images, financial time series and genomic.

  Access Model/Code and Paper
FSPool: Learning Set Representations with Featurewise Sort Pooling

Jun 06, 2019
Yan Zhang, Jonathon Hare, Adam Prügel-Bennett

We introduce a pooling method for sets of feature vectors based on sorting features across elements of the set. This allows a deep neural network for sets to learn more flexible representations. We also demonstrate how FSPool can be used to construct a permutation-equivariant auto-encoder. On a toy dataset of polygons and a set version of MNIST, we show that such an auto-encoder produces considerably better reconstructions. Used in set classification, FSPool significantly improves accuracy and convergence speed on the set versions of MNIST and CLEVR.

  Access Model/Code and Paper
Learning to Explain: Answering Why-Questions via Rephrasing

Jun 04, 2019
Allen Nie, Erin D. Bennett, Noah D. Goodman

Providing plausible responses to why questions is a challenging but critical goal for language based human-machine interaction. Explanations are challenging in that they require many different forms of abstract knowledge and reasoning. Previous work has either relied on human-curated structured knowledge bases or detailed domain representation to generate satisfactory explanations. They are also often limited to ranking pre-existing explanation choices. In our work, we contribute to the under-explored area of generating natural language explanations for general phenomena. We automatically collect large datasets of explanation-phenomenon pairs which allow us to train sequence-to-sequence models to generate natural language explanations. We compare different training strategies and evaluate their performance using both automatic scores and human ratings. We demonstrate that our strategy is sufficient to generate highly plausible explanations for general open-domain phenomena compared to other models trained on different datasets.

* 8 pages, 5 figures. 1st ConvAI Workshop at ACL 2019 

  Access Model/Code and Paper