Models, code, and papers for "Brian Kulis":

The classical mixture of Gaussians model is related to K-means via small-variance asymptotics: as the covariances of the Gaussians tend to zero, the negative log-likelihood of the mixture of Gaussians model approaches the K-means objective, and the EM algorithm approaches the K-means algorithm. Kulis & Jordan (2012) used this observation to obtain a novel K-means-like algorithm from a Gibbs sampler for the Dirichlet process (DP) mixture. We instead consider applying small-variance asymptotics directly to the posterior in Bayesian nonparametric models. This framework is independent of any specific Bayesian inference algorithm, and it has the major advantage that it generalizes immediately to a range of models beyond the DP mixture. To illustrate, we apply our framework to the feature learning setting, where the beta process and Indian buffet process provide an appropriate Bayesian nonparametric prior. We obtain a novel objective function that goes beyond clustering to learn (and penalize new) groupings for which we relax the mutual exclusivity and exhaustivity assumptions of clustering. We demonstrate several other algorithms, all of which are scalable and simple to implement. Empirical results demonstrate the benefits of the new framework.

While significant attention has been recently focused on designing supervised deep semantic segmentation algorithms for vision tasks, there are many domains in which sufficient supervised pixel-level labels are difficult to obtain. In this paper, we revisit the problem of purely unsupervised image segmentation and propose a novel deep architecture for this problem. We borrow recent ideas from supervised semantic segmentation methods, in particular by concatenating two fully convolutional networks together into an autoencoder--one for encoding and one for decoding. The encoding layer produces a k-way pixelwise prediction, and both the reconstruction error of the autoencoder as well as the normalized cut produced by the encoder are jointly minimized during training. When combined with suitable postprocessing involving conditional random field smoothing and hierarchical segmentation, our resulting algorithm achieves impressive results on the benchmark Berkeley Segmentation Data Set, outperforming a number of competing methods.

Conjugate pairs of distributions over infinite dimensional spaces are prominent in statistical learning theory, particularly due to the widespread adoption of Bayesian nonparametric methodologies for a host of models and applications. Much of the existing literature in the learning community focuses on processes possessing some form of computationally tractable conjugacy as is the case for the beta and gamma processes (and, via normalization, the Dirichlet process). For these processes, proofs of conjugacy and requisite derivation of explicit computational formulae for posterior density parameters are idiosyncratic to the stochastic process in question. As such, Bayesian Nonparametric models are currently available for a limited number of conjugate pairs, e.g. the Dirichlet-multinomial and beta-Bernoulli process pairs. In each of these above cases the likelihood process belongs to the class of discrete exponential family distributions. The exclusion of continuous likelihood distributions from the known cases of Bayesian Nonparametric Conjugate models stands as a disparity in the researcher's toolbox. In this paper we first address the problem of obtaining a general construction of prior distributions over infinite dimensional spaces possessing distributional properties amenable to conjugacy. Second, we bridge the divide between the discrete and continuous likelihoods by illustrating a canonical construction for stochastic processes whose Levy measure densities are from positive exponential families, and then demonstrate that these processes in fact form the prior, likelihood, and posterior in a conjugate family. Our canonical construction subsumes known computational formulae for posterior density parameters in the cases where the likelihood is from a discrete distribution belonging to an exponential family.

While most Bayesian nonparametric models in machine learning have focused on the Dirichlet process, the beta process, or their variants, the gamma process has recently emerged as a useful nonparametric prior in its own right. Current inference schemes for models involving the gamma process are restricted to MCMC-based methods, which limits their scalability. In this paper, we present a variational inference framework for models involving gamma process priors. Our approach is based on a novel stick-breaking constructive definition of the gamma process. We prove correctness of this stick-breaking process by using the characterization of the gamma process as a completely random measure (CRM), and we explicitly derive the rate measure of our construction using Poisson process machinery. We also derive error bounds on the truncation of the infinite process required for variational inference, similar to the truncation analyses for other nonparametric models based on the Dirichlet and beta processes. Our representation is then used to derive a variational inference algorithm for a particular Bayesian nonparametric latent structure formulation known as the infinite Gamma-Poisson model, where the latent variables are drawn from a gamma process prior with Poisson likelihoods. Finally, we present results for our algorithms on nonnegative matrix factorization tasks on document corpora, and show that we compare favorably to both sampling-based techniques and variational approaches based on beta-Bernoulli priors.

Bayesian models offer great flexibility for clustering applications---Bayesian nonparametrics can be used for modeling infinite mixtures, and hierarchical Bayesian models can be utilized for sharing clusters across multiple data sets. For the most part, such flexibility is lacking in classical clustering methods such as k-means. In this paper, we revisit the k-means clustering algorithm from a Bayesian nonparametric viewpoint. Inspired by the asymptotic connection between k-means and mixtures of Gaussians, we show that a Gibbs sampling algorithm for the Dirichlet process mixture approaches a hard clustering algorithm in the limit, and further that the resulting algorithm monotonically minimizes an elegant underlying k-means-like clustering objective that includes a penalty for the number of clusters. We generalize this analysis to the case of clustering multiple data sets through a similar asymptotic argument with the hierarchical Dirichlet process. We also discuss further extensions that highlight the benefits of our analysis: i) a spectral relaxation involving thresholded eigenvectors, and ii) a normalized cut graph clustering algorithm that does not fix the number of clusters in the graph.

Bayesian nonparametrics are a class of probabilistic models in which the model size is inferred from data. A recently developed methodology in this field is small-variance asymptotic analysis, a mathematical technique for deriving learning algorithms that capture much of the flexibility of Bayesian nonparametric inference algorithms, but are simpler to implement and less computationally expensive. Past work on small-variance analysis of Bayesian nonparametric inference algorithms has exclusively considered batch models trained on a single, static dataset, which are incapable of capturing time evolution in the latent structure of the data. This work presents a small-variance analysis of the maximum a posteriori filtering problem for a temporally varying mixture model with a Markov dependence structure, which captures temporally evolving clusters within a dataset. Two clustering algorithms result from the analysis: D-Means, an iterative clustering algorithm for linearly separable, spherical clusters; and SD-Means, a spectral clustering algorithm derived from a kernelized, relaxed version of the clustering problem. Empirical results from experiments demonstrate the advantages of using D-Means and SD-Means over contemporary clustering algorithms, in terms of both computational cost and clustering accuracy.

Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.

Topic models have emerged as fundamental tools in unsupervised machine learning. Most modern topic modeling algorithms take a probabilistic view and derive inference algorithms based on Latent Dirichlet Allocation (LDA) or its variants. In contrast, we study topic modeling as a combinatorial optimization problem, and propose a new objective function derived from LDA by passing to the small-variance limit. We minimize the derived objective by using ideas from combinatorial optimization, which results in a new, fast, and high-quality topic modeling algorithm. In particular, we show that our results are competitive with popular LDA-based topic modeling approaches, and also discuss the (dis)similarities between our approach and its probabilistic counterparts.

Algorithms based on spectral graph cut objectives such as normalized cuts, ratio cuts and ratio association have become popular in recent years because they are widely applicable and simple to implement via standard eigenvector computations. Despite strong performance for a number of clustering tasks, spectral graph cut algorithms still suffer from several limitations: first, they require the number of clusters to be known in advance, but this information is often unknown a priori; second, they tend to produce clusters with uniform sizes. In some cases, the true clusters exhibit a known size distribution; in image segmentation, for instance, human-segmented images tend to yield segment sizes that follow a power-law distribution. In this paper, we propose a general framework of power-law graph cut algorithms that produce clusters whose sizes are power-law distributed, and also does not fix the number of clusters upfront. To achieve our goals, we treat the Pitman-Yor exchangeable partition probability function (EPPF) as a regularizer to graph cut objectives. Because the resulting objectives cannot be solved by relaxing via eigenvectors, we derive a simple iterative algorithm to locally optimize the objectives. Moreover, we show that our proposed algorithm can be viewed as performing MAP inference on a particular Pitman-Yor mixture model. Our experiments on various data sets show the effectiveness of our algorithms.

We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.

Metric learning is the problem of learning a task-specific distance function given supervision. Classical linear methods for this problem (known as Mahalanobis metric learning approaches) are well-studied both theoretically and empirically, but are limited to Euclidean distances after learned linear transformations of the input space. In this paper, we consider learning a Bregman divergence, a rich and important class of divergences that includes Mahalanobis metrics as a special case but also includes the KL-divergence and others. We develop a formulation and algorithm for learning arbitrary Bregman divergences based on approximating their underlying convex generating function via a piecewise linear function. We show several theoretical results of our resulting model, including a PAC guarantee that the learned Bregman divergence approximates an arbitrary Bregman divergence with error O_p (m^(-1/(d+2))), where m is the number of training points and d is the dimension of the data. We provide empirical results on using the learned divergences for classification, semi-supervised clustering, and ranking problems.

Existing automatic music generation approaches that feature deep learning can be broadly classified into two types: raw audio models and symbolic models. Symbolic models, which train and generate at the note level, are currently the more prevalent approach; these models can capture long-range dependencies of melodic structure, but fail to grasp the nuances and richness of raw audio generations. Raw audio models, such as DeepMind's WaveNet, train directly on sampled audio waveforms, allowing them to produce realistic-sounding, albeit unstructured music. In this paper, we propose an automatic music generation methodology combining both of these approaches to create structured, realistic-sounding compositions. We consider a Long Short Term Memory network to learn the melodic structure of different styles of music, and then use the unique symbolic generations from this model as a conditioning input to a WaveNet-based raw audio generator, creating a model for automatic, novel music. We then evaluate this approach by showcasing results of this work.

This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a low-variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.

Metric and kernel learning are important in several machine learning applications. However, most existing metric learning algorithms are limited to learning metrics over low-dimensional data, while existing kernel learning algorithms are often limited to the transductive setting and do not generalize to new data points. In this paper, we study metric learning as a problem of learning a linear transformation of the input data. We show that for high-dimensional data, a particular framework for learning a linear transformation of the data based on the LogDet divergence can be efficiently kernelized to learn a metric (or equivalently, a kernel function) over an arbitrarily high dimensional space. We further demonstrate that a wide class of convex loss functions for learning linear transformations can similarly be kernelized, thereby considerably expanding the potential applications of metric learning. We demonstrate our learning approach by applying it to large-scale real world problems in computer vision and text mining.

Despite achieving remarkable success in various domains, recent studies have uncovered the vulnerability of deep neural networks to adversarial perturbations, creating concerns on model generalizability and new threats such as prediction-evasive misclassification or stealthy reprogramming. Among different defense proposals, stochastic network defenses such as random neuron activation pruning or random perturbation to layer inputs are shown to be promising for attack mitigation. However, one critical drawback of current defenses is that the robustness enhancement is at the cost of noticeable performance degradation on legitimate data, e.g., large drop in test accuracy. This paper is motivated by pursuing for a better trade-off between adversarial robustness and test accuracy for stochastic network defenses. We propose Defense Efficiency Score (DES), a comprehensive metric that measures the gain in unsuccessful attack attempts at the cost of drop in test accuracy of any defense. To achieve a better DES, we propose hierarchical random switching (HRS), which protects neural networks through a novel randomization scheme. A HRS-protected model contains several blocks of randomly switching channels to prevent adversaries from exploiting fixed model structures and parameters for their malicious purposes. Extensive experiments show that HRS is superior in defending against state-of-the-art white-box and adaptive adversarial misclassification attacks. We also demonstrate the effectiveness of HRS in defending adversarial reprogramming, which is the first defense against adversarial programs. Moreover, in most settings the average DES of HRS is at least 5X higher than current stochastic network defenses, validating its significantly improved robustness-accuracy trade-off.