Models, code, and papers for "Chao Du":

Inner Product Similarity Search using Compositional Codes

Jun 20, 2014
Chao Du, Jingdong Wang

This paper addresses the nearest neighbor search problem under inner product similarity and introduces a compact code-based approach. The idea is to approximate a vector using the composition of several elements selected from a source dictionary and to represent this vector by a short code composed of the indices of the selected elements. The inner product between a query vector and a database vector is efficiently estimated from the query vector and the short code of the database vector. We show the superior performance of the proposed group $M$-selection algorithm that selects $M$ elements from $M$ source dictionaries for vector approximation in terms of search accuracy and efficiency for compact codes of the same length via theoretical and empirical analysis. Experimental results on large-scale datasets ($1M$ and $1B$ SIFT features, $1M$ linear models and Netflix) demonstrate the superiority of the proposed approach.

* The approach presented in this paper (ECCV14 submission) is closely related to multi-stage vector quantization and residual quantization. Thanks the reviewers (CVPR14 and ECCV14) for pointing out the relationship to the two algorithms. Related paper:, which also adopts the summation of vectors for vector approximation 

  Click for Model/Code and Paper
Learning to Detect Instantaneous Changes with Retrospective Convolution and Static Sample Synthesis

Nov 20, 2018
Chao Chen, Sheng Zhang, Cuibing Du

Change detection has been a challenging visual task due to the dynamic nature of real-world scenes. Good performance of existing methods depends largely on prior background images or a long-term observation. These methods, however, suffer severe degradation when they are applied to detection of instantaneously occurred changes with only a few preceding frames provided. In this paper, we exploit spatio-temporal convolutional networks to address this challenge, and propose a novel retrospective convolution, which features efficient change information extraction between the current frame and frames from historical observation. To address the problem of foreground-specific over-fitting in learning-based methods, we further propose a data augmentation method, named static sample synthesis, to guide the network to focus on learning change-cued information rather than specific spatial features of foreground. Trained end-to-end with complex scenarios, our framework proves to be accurate in detecting instantaneous changes and robust in combating diverse noises. Extensive experiments demonstrate that our proposed method significantly outperforms existing methods.

* 10 pages, 9 figures 

  Click for Model/Code and Paper
Max-Mahalanobis Linear Discriminant Analysis Networks

Jun 19, 2018
Tianyu Pang, Chao Du, Jun Zhu

A deep neural network (DNN) consists of a nonlinear transformation from an input to a feature representation, followed by a common softmax linear classifier. Though many efforts have been devoted to designing a proper architecture for nonlinear transformation, little investigation has been done on the classifier part. In this paper, we show that a properly designed classifier can improve robustness to adversarial attacks and lead to better prediction results. Specifically, we define a Max-Mahalanobis distribution (MMD) and theoretically show that if the input distributes as a MMD, the linear discriminant analysis (LDA) classifier will have the best robustness to adversarial examples. We further propose a novel Max-Mahalanobis linear discriminant analysis (MM-LDA) network, which explicitly maps a complicated data distribution in the input space to a MMD in the latent feature space and then applies LDA to make predictions. Our results demonstrate that the MM-LDA networks are significantly more robust to adversarial attacks, and have better performance in class-biased classification.

  Click for Model/Code and Paper
Learning Deep Generative Models with Doubly Stochastic MCMC

Mar 07, 2016
Chao Du, Jun Zhu, Bo Zhang

We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models (DGMs) in a collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a mini-batch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over hidden variables via a neural adaptive importance sampler, where the proposal distribution is parameterized by a deep neural network and learnt jointly. We demonstrate the effectiveness on learning various DGMs in a wide range of tasks, including density estimation, data generation and missing data imputation. Our method outperforms many state-of-the-art competitors.

  Click for Model/Code and Paper
Towards Robust Detection of Adversarial Examples

Feb 26, 2018
Tianyu Pang, Chao Du, Yinpeng Dong, Jun Zhu

Although the recent progress is substantial, deep learning methods can be vulnerable to the maliciously generated adversarial examples. In this paper, we present a novel training procedure and a thresholding test strategy, towards robust detection of adversarial examples. In training, we propose to minimize the reverse cross-entropy (RCE), which encourages a deep network to learn latent representations that better distinguish adversarial examples from normal ones. In testing, we propose to use a thresholding strategy as the detector to filter out adversarial examples for reliable predictions. Our method is simple to implement using standard algorithms, with little extra training cost compared to the common cross-entropy minimization. We apply our method to defend various attacking methods on the widely used MNIST and CIFAR-10 datasets, and achieve significant improvements on robust predictions under all the threat models in the adversarial setting.

  Click for Model/Code and Paper
Improving Adversarial Robustness via Promoting Ensemble Diversity

Jan 25, 2019
Tianyu Pang, Kun Xu, Chao Du, Ning Chen, Jun Zhu

Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.

  Click for Model/Code and Paper
Learning Implicit Generative Models by Teaching Explicit Ones

Jul 10, 2018
Chao Du, Kun Xu, Chongxuan Li, Jun Zhu, Bo Zhang

Implicit generative models are difficult to train as no explicit probability density functions are defined. The well-known minimax framework proposed by generative adversarial nets (GANs) is equivalent to minimizing the Jensen-Shannon divergence and suffers from mode collapse in practice. In this paper, we propose learning by teaching (LBT) framework to train implicit generative models via incorporating an auxiliary explicit model. In LBT, an explicit model is introduced to learn the distribution defined by the implicit model and the later one's goal is to teach the explicit model to cover the training data. Formally, our method is formulated as a bilevel optimization problem, whose optimum implies that we obatin the MLE of the implicit model. We also adopt the unrolling trick to make the optimization problem differentiable with respect to the implicit model's parameters. Experimental results demonstrate the effectiveness of our proposed method.

  Click for Model/Code and Paper
Collaborative Filtering with User-Item Co-Autoregressive Models

Jul 05, 2018
Chao Du, Chongxuan Li, Yin Zheng, Jun Zhu, Bo Zhang

Deep neural networks have shown promise in collaborative filtering (CF). However, existing neural approaches are either user-based or item-based, which cannot leverage all the underlying information explicitly. We propose CF-UIcA, a neural co-autoregressive model for CF tasks, which exploits the structural correlation in the domains of both users and items. The co-autoregression allows extra desired properties to be incorporated for different tasks. Furthermore, we develop an efficient stochastic learning algorithm to handle large scale datasets. We evaluate CF-UIcA on two popular benchmarks: MovieLens 1M and Netflix, and achieve state-of-the-art performance in both rating prediction and top-N recommendation tasks, which demonstrates the effectiveness of CF-UIcA.

* Published in AAAI 2018 

  Click for Model/Code and Paper
Transfer Heterogeneous Knowledge Among Peer-to-Peer Teammates: A Model Distillation Approach

Feb 06, 2020
Zeyue Xue, Shuang Luo, Chao Wu, Pan Zhou, Kaigui Bian, Wei Du

Peer-to-peer knowledge transfer in distributed environments has emerged as a promising method since it could accelerate learning and improve team-wide performance without relying on pre-trained teachers in deep reinforcement learning. However, for traditional peer-to-peer methods such as action advising, they have encountered difficulties in how to efficiently expressed knowledge and advice. As a result, we propose a brand new solution to reuse experiences and transfer value functions among multiple students via model distillation. But it is still challenging to transfer Q-function directly since it is unstable and not bounded. To address this issue confronted with existing works, we adopt Categorical Deep Q-Network. We also describe how to design an efficient communication protocol to exploit heterogeneous knowledge among multiple distributed agents. Our proposed framework, namely Learning and Teaching Categorical Reinforcement (LTCR), shows promising performance on stabilizing and accelerating learning progress with improved team-wide reward in four typical experimental environments.

* 7 pages, 7 figures 

  Click for Model/Code and Paper
Training Deep Neural Networks Using Posit Number System

Sep 06, 2019
Jinming Lu, Siyuan Lu, Zhisheng Wang, Chao Fang, Jun Lin, Zhongfeng Wang, Li Du

With the increasing size of Deep Neural Network (DNN) models, the high memory space requirements and computational complexity have become an obstacle for efficient DNN implementations. To ease this problem, using reduced-precision representations for DNN training and inference has attracted many interests from researchers. This paper first proposes a methodology for training DNNs with the posit arithmetic, a type- 3 universal number (Unum) format that is similar to the floating point(FP) but has reduced precision. A warm-up training strategy and layer-wise scaling factors are adopted to stabilize training and fit the dynamic range of DNN parameters. With the proposed training methodology, we demonstrate the first successful training of DNN models on ImageNet image classification task in 16 bits posit with no accuracy loss. Then, an efficient hardware architecture for the posit multiply-and-accumulate operation is also proposed, which can achieve significant improvement in energy efficiency than traditional floating-point implementations. The proposed design is helpful for future low-power DNN training accelerators.

* accepted by SOCC2019 

  Click for Model/Code and Paper
Representation Learning-Assisted Click-Through Rate Prediction

Jul 19, 2019
Wentao Ouyang, Xiuwu Zhang, Shukui Ren, Chao Qi, Zhaojie Liu, Yanlong Du

Click-through rate (CTR) prediction is a critical task in online advertising systems. Most existing methods mainly model the feature-CTR relationship and suffer from the data sparsity issue. In this paper, we propose DeepMCP, which models other types of relationships in order to learn more informative and statistically reliable feature representations, and in consequence to improve the performance of CTR prediction. In particular, DeepMCP contains three parts: a matching subnet, a correlation subnet and a prediction subnet. These subnets model the user-ad, ad-ad and feature-CTR relationship respectively. When these subnets are jointly optimized under the supervision of the target labels, the learned feature representations have both good prediction powers and good representation abilities. Experiments on two large-scale datasets demonstrate that DeepMCP outperforms several state-of-the-art models for CTR prediction.

* Accepted by IJCAI 2019 

  Click for Model/Code and Paper
Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

May 25, 2019
Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, Jun Zhu

Previous work shows that adversarially robust generalization requires larger sample complexity, and the same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models. Since collecting new training data could be costly, we instead focus on inducing locally dense sample distribution, i.e., high sample density in the feature space which could lead to locally sufficient samples for robust learning. We first formally show that the softmax cross-entropy (SCE) loss and its variants induce inappropriate sample density distributions in the feature space, which inspires us to design appropriate training objectives. Specifically, we propose the Max-Mahalanobis center (MMC) loss to create high-density regions for better robustness. It encourages the learned features to gather around the preset class centers with optimal inter-class dispersion. Comparing to the SCE loss and its variants, we empirically demonstrate that applying the MMC loss can significantly improve robustness even under strong adaptive attacks, while keeping state-of-the-art accuracy on clean inputs with little extra computation.

  Click for Model/Code and Paper
Adversarial Variational Inference and Learning in Markov Random Fields

Jan 24, 2019
Chongxuan Li, Chao Du, Kun Xu, Max Welling, Jun Zhu, Bo Zhang

Markov random fields (MRFs) find applications in a variety of machine learning areas, while the inference and learning of such models are challenging in general. In this paper, we propose the Adversarial Variational Inference and Learning (AVIL) algorithm to solve the problems with a minimal assumption about the model structure of an MRF. AVIL employs two variational distributions to approximately infer the latent variables and estimate the partition function, respectively. The variational distributions, which are parameterized as neural networks, provide an estimate of the negative log likelihood of the MRF. On one hand, the estimate is in an intuitive form of approximate contrastive free energy. On the other hand, the estimate is a minimax optimization problem, which is solved by stochastic gradient descent in an alternating manner. We apply AVIL to various undirected generative models in a fully black-box manner and obtain better results than existing competitors on several real datasets.

  Click for Model/Code and Paper
Feature Extraction and Classification Based on Spatial-Spectral ConvLSTM Neural Network for Hyperspectral Images

May 09, 2019
Wen-Shuai Hu, Heng-Chao Li, Lei Pan, Wei Li, Ran Tao, Qian Du

In recent years, deep learning has presented a great advance in hyperspectral image (HSI) classification. Particularly, Long Short-Term Memory (LSTM), as a special deep learning structure, has shown great ability in modeling long-term dependencies in the time dimension of video or the spectral dimension of HSIs. However, the loss of spatial information makes it quite difficult to obtain the better performance. In order to address this problem, two novel deep models are proposed to extract more discriminative spatial-spectral features by exploiting the Convolutional LSTM (ConvLSTM) for the first time. By taking the data patch in a local sliding window as the input of each memory cell band by band, the 2-D extended architecture of LSTM is considered for building the spatial-spectral ConvLSTM 2-D Neural Network (SSCL2DNN) to model long-range dependencies in the spectral domain. To take advantage of spatial and spectral information more effectively for extracting a more discriminative spatial-spectral feature representation, the spatial-spectral ConvLSTM 3-D Neural Network (SSCL3DNN) is further proposed by extending LSTM to 3-D version. The experiments, conducted on three commonly used HSI data sets, demonstrate that the proposed deep models have certain competitive advantages and can provide better classification performance than other state-of-the-art approaches.

  Click for Model/Code and Paper
Field-Programmable Crossbar Array (FPCA) for Reconfigurable Computing

Jul 20, 2017
Mohammed A. Zidan, YeonJoo Jeong, Jong Hong Shin, Chao Du, Zhengya Zhang, Wei D. Lu

For decades, advances in electronics were directly driven by the scaling of CMOS transistors according to Moore's law. However, both the CMOS scaling and the classical computer architecture are approaching fundamental and practical limits, and new computing architectures based on emerging devices, such as resistive random-access memory (RRAM) devices, are expected to sustain the exponential growth of computing capability. Here we propose a novel memory-centric, reconfigurable, general purpose computing platform that is capable of handling the explosive amount of data in a fast and energy-efficient manner. The proposed computing architecture is based on a uniform, physical, resistive, memory-centric fabric that can be optimally reconfigured and utilized to perform different computing and data storage tasks in a massively parallel approach. The system can be tailored to achieve maximal energy efficiency based on the data flow by dynamically allocating the basic computing fabric for storage, arithmetic, and analog computing including neuromorphic computing tasks.

  Click for Model/Code and Paper
Unsupervised Neural Dialect Translation with Commonality and Diversity Modeling

Dec 11, 2019
Yu Wan, Baosong Yang, Derek F. Wong, Lidia S. Chao, Haihua Du, Ben C. H. Ao

As a special machine translation task, dialect translation has two main characteristics: 1) lack of parallel training corpus; and 2) possessing similar grammar between two sides of the translation. In this paper, we investigate how to exploit the commonality and diversity between dialects thus to build unsupervised translation models merely accessing to monolingual data. Specifically, we leverage pivot-private embedding, layer coordination, as well as parameter sharing to sufficiently model commonality and diversity among source and target, ranging from lexical, through syntactic, to semantic levels. In order to examine the effectiveness of the proposed models, we collect 20 million monolingual corpus for each of Mandarin and Cantonese, which are official language and the most widely used dialect in China. Experimental results reveal that our methods outperform rule-based simplified and traditional Chinese conversion and conventional unsupervised translation models over 12 BLEU scores.

* AAAI 2020 

  Click for Model/Code and Paper
HarDNet: A Low Memory Traffic Network

Sep 03, 2019
Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin

State-of-the-art neural network architectures such as ResNet, MobileNet, and DenseNet have achieved outstanding accuracy over low MACs and small model size counterparts. However, these metrics might not be accurate for predicting the inference time. We suggest that memory traffic for accessing intermediate feature maps can be a factor dominating the inference latency, especially in such tasks as real-time object detection and semantic segmentation of high-resolution video. We propose a Harmonic Densely Connected Network to achieve high efficiency in terms of both low MACs and memory traffic. The new network achieves 35%, 36%, 30%, 32%, and 45% inference time reduction compared with FC-DenseNet-103, DenseNet-264, ResNet-50, ResNet-152, and SSD-VGG, respectively. We use tools including Nvidia profiler and ARM Scale-Sim to measure the memory traffic and verify that the inference latency is indeed proportional to the memory traffic consumption and the proposed network consumes low memory traffic. We conclude that one should take memory traffic into consideration when designing neural network architectures for high-resolution applications at the edge.

* ICCV 2019 

  Click for Model/Code and Paper
Multi-objective Evolutionary Algorithms are Still Good: Maximizing Monotone Approximately Submodular Minus Modular Functions

Oct 12, 2019
Chao Qian

As evolutionary algorithms (EAs) are general-purpose optimization algorithms, recent theoretical studies have tried to analyze their performance for solving general problem classes, with the goal of providing a general theoretical explanation of the behavior of EAs. Particularly, a simple multi-objective EA, i.e., GSEMO, has been shown to be able to achieve good polynomial-time approximation guarantees for submodular optimization, where the objective function is only required to satisfy some properties but without explicit formulation. Submodular optimization has wide applications in diverse areas, and previous studies have considered the cases where the objective functions are monotone submodular, monotone non-submodular, or non-monotone submodular. To complement this line of research, this paper studies the problem class of maximizing monotone approximately submodular minus modular functions (i.e., $f=g-c$) with a size constraint, where $g$ is a non-negative monotone approximately submodular function and $c$ is a non-negative modular function, resulting in the objective function $f$ being non-monotone non-submodular. We prove that the GSEMO can achieve the best-known polynomial-time approximation guarantee. Empirical studies on the applications of Bayesian experimental design and directed vertex cover show the excellent performance of the GSEMO.

  Click for Model/Code and Paper