Models, code, and papers for "Chunhua Shen":

Piecewise classifier mappings: Learning fine-grained learners for novel categories with few examples

May 11, 2018
Xiu-Shen Wei, Peng Wang, Lingqiao Liu, Chunhua Shen, Jianxin Wu

Humans are capable of learning a new fine-grained concept with very little supervision, e.g., few exemplary images for a species of bird, yet our best deep learning systems need hundreds or thousands of labeled examples. In this paper, we try to reduce this gap by studying the fine-grained image recognition problem in a challenging few-shot learning setting, termed few-shot fine-grained recognition (FSFG). The task of FSFG requires the learning systems to build classifiers for novel fine-grained categories from few examples (only one or less than five). To solve this problem, we propose an end-to-end trainable deep network which is inspired by the state-of-the-art fine-grained recognition model and is tailored for the FSFG task. Specifically, our network consists of a bilinear feature learning module and a classifier mapping module: while the former encodes the discriminative information of an exemplar image into a feature vector, the latter maps the intermediate feature into the decision boundary of the novel category. The key novelty of our model is a "piecewise mappings" function in the classifier mapping module, which generates the decision boundary via learning a set of more attainable sub-classifiers in a more parameter-economic way. We learn the exemplar-to-classifier mapping based on an auxiliary dataset in a meta-learning fashion, which is expected to be able to generalize to novel categories. By conducting comprehensive experiments on three fine-grained datasets, we demonstrate that the proposed method achieves superior performance over the competing baselines.


  Access Model/Code and Paper
Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

May 02, 2017
Yu Chen, Chunhua Shen, Xiu-Shen Wei, Lingqiao Liu, Jian Yang

For human pose estimation in monocular images, joint occlusions and overlapping upon human bodies often result in deviated pose predictions. Under these circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of joint inter-connectivity. To address the problem by incorporating priors about the structure of human bodies, we propose a novel structure-aware convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator (G) generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors.

* Fixed typos. 14 pages. Demonstration videos are http://v.qq.com/x/page/c039862eira.html, http://v.qq.com/x/page/f0398zcvkl5.html, http://v.qq.com/x/page/w0398ei9m1r.html 

  Access Model/Code and Paper
Coarse-to-fine: A RNN-based hierarchical attention model for vehicle re-identification

Dec 11, 2018
Xiu-Shen Wei, Chen-Lin Zhang, Lingqiao Liu, Chunhua Shen, Jianxin Wu

Vehicle re-identification is an important problem and becomes desirable with the rapid expansion of applications in video surveillance and intelligent transportation. By recalling the identification process of human vision, we are aware that there exists a native hierarchical dependency when humans identify different vehicles. Specifically, humans always firstly determine one vehicle's coarse-grained category, i.e., the car model/type. Then, under the branch of the predicted car model/type, they are going to identify specific vehicles by relying on subtle visual cues, e.g., customized paintings and windshield stickers, at the fine-grained level. Inspired by the coarse-to-fine hierarchical process, we propose an end-to-end RNN-based Hierarchical Attention (RNN-HA) classification model for vehicle re-identification. RNN-HA consists of three mutually coupled modules: the first module generates image representations for vehicle images, the second hierarchical module models the aforementioned hierarchical dependent relationship, and the last attention module focuses on capturing the subtle visual information distinguishing specific vehicles from each other. By conducting comprehensive experiments on two vehicle re-identification benchmark datasets VeRi and VehicleID, we demonstrate that the proposed model achieves superior performance over state-of-the-art methods.

* ACCV 2018 

  Access Model/Code and Paper
Adversarial Learning of Structure-Aware Fully Convolutional Networks for Landmark Localization

Nov 02, 2018
Yu Chen, Chunhua Shen, Hao Chen, Xiu-Shen Wei, Lingqiao Liu, Jian Yang

Landmark/pose estimation in single monocular images have received much effort in computer vision due to its important applications. It remains a challenging task when input images severe occlusions caused by, e.g., adverse camera views. Under such circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of landmark point inter-connectivity. To address the problem, by incorporating priors about the structure of pose components, we propose a novel structure-aware fully convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, inspired by how human identifies implausible poses, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator G generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors. Training of the network follows the strategy of conditional Generative Adversarial Networks (GANs). The effectiveness of the proposed network is evaluated on three pose-related tasks: 2D single human pose estimation, 2D facial landmark estimation and 3D single human pose estimation. The proposed approach significantly outperforms the state-of-the-art methods and almost always generates plausible pose predictions, demonstrating the usefulness of implicit learning of structures using GANs.

* 17 pages. Extended version of arXiv:1705.00389. Under review by IEEE Trans. Pattern Analysis and Machine Intelligence. Minor Revision Oct. 2018 

  Access Model/Code and Paper
Unsupervised Object Discovery and Co-Localization by Deep Descriptor Transforming

Jul 20, 2017
Xiu-Shen Wei, Chen-Lin Zhang, Jianxin Wu, Chunhua Shen, Zhi-Hua Zhou

Reusable model design becomes desirable with the rapid expansion of computer vision and machine learning applications. In this paper, we focus on the reusability of pre-trained deep convolutional models. Specifically, different from treating pre-trained models as feature extractors, we reveal more treasures beneath convolutional layers, i.e., the convolutional activations could act as a detector for the common object in the image co-localization problem. We propose a simple yet effective method, termed Deep Descriptor Transforming (DDT), for evaluating the correlations of descriptors and then obtaining the category-consistent regions, which can accurately locate the common object in a set of unlabeled images, i.e., unsupervised object discovery. Empirical studies validate the effectiveness of the proposed DDT method. On benchmark image co-localization datasets, DDT consistently outperforms existing state-of-the-art methods by a large margin. Moreover, DDT also demonstrates good generalization ability for unseen categories and robustness for dealing with noisy data. Beyond those, DDT can be also employed for harvesting web images into valid external data sources for improving performance of both image recognition and object detection.

* This paper is extended based on our preliminary work published in IJCAI 2017 [arXiv:1705.02758] 

  Access Model/Code and Paper
Deep Descriptor Transforming for Image Co-Localization

May 08, 2017
Xiu-Shen Wei, Chen-Lin Zhang, Yao Li, Chen-Wei Xie, Jianxin Wu, Chunhua Shen, Zhi-Hua Zhou

Reusable model design becomes desirable with the rapid expansion of machine learning applications. In this paper, we focus on the reusability of pre-trained deep convolutional models. Specifically, different from treating pre-trained models as feature extractors, we reveal more treasures beneath convolutional layers, i.e., the convolutional activations could act as a detector for the common object in the image co-localization problem. We propose a simple but effective method, named Deep Descriptor Transforming (DDT), for evaluating the correlations of descriptors and then obtaining the category-consistent regions, which can accurately locate the common object in a set of images. Empirical studies validate the effectiveness of the proposed DDT method. On benchmark image co-localization datasets, DDT consistently outperforms existing state-of-the-art methods by a large margin. Moreover, DDT also demonstrates good generalization ability for unseen categories and robustness for dealing with noisy data.

* Accepted by IJCAI 2017 

  Access Model/Code and Paper
A scalable stage-wise approach to large-margin multi-class loss based boosting

Jul 21, 2013
Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel

We present a scalable and effective classification model to train multi-class boosting for multi-class classification problems. Shen and Hao introduced a direct formulation of multi- class boosting in the sense that it directly maximizes the multi- class margin [C. Shen and Z. Hao, "A direct formulation for totally-corrective multi- class boosting", in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011]. The major problem of their approach is its high computational complexity for training, which hampers its application on real-world problems. In this work, we propose a scalable and simple stage-wise multi-class boosting method, which also directly maximizes the multi-class margin. Our approach of- fers a few advantages: 1) it is simple and computationally efficient to train. The approach can speed up the training time by more than two orders of magnitude without sacrificing the classification accuracy. 2) Like traditional AdaBoost, it is less sensitive to the choice of parameters and empirically demonstrates excellent generalization performance. Experimental results on challenging multi-class machine learning and vision tasks demonstrate that the proposed approach substantially improves the convergence rate and accuracy of the final visual detector at no additional computational cost compared to existing multi-class boosting.

* 12 pages 

  Access Model/Code and Paper
Generic Image Classification Approaches Excel on Face Recognition

Sep 30, 2013
Fumin Shen, Chunhua Shen

The main finding of this work is that the standard image classification pipeline, which consists of dictionary learning, feature encoding, spatial pyramid pooling and linear classification, outperforms all state-of-the-art face recognition methods on the tested benchmark datasets (we have tested on AR, Extended Yale B, the challenging FERET, and LFW-a datasets). This surprising and prominent result suggests that those advances in generic image classification can be directly applied to improve face recognition systems. In other words, face recognition may not need to be viewed as a separate object classification problem. While recently a large body of residual based face recognition methods focus on developing complex dictionary learning algorithms, in this work we show that a dictionary of randomly extracted patches (even from non-face images) can achieve very promising results using the image classification pipeline. That means, the choice of dictionary learning methods may not be important. Instead, we find that learning multiple dictionaries using different low-level image features often improve the final classification accuracy. Our proposed face recognition approach offers the best reported results on the widely-used face recognition benchmark datasets. In particular, on the challenging FERET and LFW-a datasets, we improve the best reported accuracies in the literature by about 20% and 30% respectively.

* 10 pages 

  Access Model/Code and Paper
Fast Training of Effective Multi-class Boosting Using Coordinate Descent Optimization

Nov 23, 2013
Guosheng Lin, Chunhua Shen, Anton van den Hengel, David Suter

Wepresentanovelcolumngenerationbasedboostingmethod for multi-class classification. Our multi-class boosting is formulated in a single optimization problem as in Shen and Hao (2011). Different from most existing multi-class boosting methods, which use the same set of weak learners for all the classes, we train class specified weak learners (i.e., each class has a different set of weak learners). We show that using separate weak learner sets for each class leads to fast convergence, without introducing additional computational overhead in the training procedure. To further make the training more efficient and scalable, we also propose a fast co- ordinate descent method for solving the optimization problem at each boosting iteration. The proposed coordinate descent method is conceptually simple and easy to implement in that it is a closed-form solution for each coordinate update. Experimental results on a variety of datasets show that, compared to a range of existing multi-class boosting meth- ods, the proposed method has much faster convergence rate and better generalization performance in most cases. We also empirically show that the proposed fast coordinate descent algorithm needs less training time than the MultiBoost algorithm in Shen and Hao (2011).

* Appeared in Proc. Asian Conf. Computer Vision 2012. Code can be downloaded at http://goo.gl/WluhrQ 

  Access Model/Code and Paper
Reading Car License Plates Using Deep Convolutional Neural Networks and LSTMs

Jan 21, 2016
Hui Li, Chunhua Shen

In this work, we tackle the problem of car license plate detection and recognition in natural scene images. Inspired by the success of deep neural networks (DNNs) in various vision applications, here we leverage DNNs to learn high-level features in a cascade framework, which lead to improved performance on both detection and recognition. Firstly, we train a $37$-class convolutional neural network (CNN) to detect all characters in an image, which results in a high recall, compared with conventional approaches such as training a binary text/non-text classifier. False positives are then eliminated by the second plate/non-plate CNN classifier. Bounding box refinement is then carried out based on the edge information of the license plates, in order to improve the intersection-over-union (IoU) ratio. The proposed cascade framework extracts license plates effectively with both high recall and precision. Last, we propose to recognize the license characters as a {sequence labelling} problem. A recurrent neural network (RNN) with long short-term memory (LSTM) is trained to recognize the sequential features extracted from the whole license plate via CNNs. The main advantage of this approach is that it is segmentation free. By exploring context information and avoiding errors caused by segmentation, the RNN method performs better than a baseline method of combining segmentation and deep CNN classification; and achieves state-of-the-art recognition accuracy.

* 17 pages 

  Access Model/Code and Paper
Learning Deep Convolutional Features for MRI Based Alzheimer's Disease Classification

Apr 28, 2014
Fayao Liu, Chunhua Shen

Effective and accurate diagnosis of Alzheimer's disease (AD) or mild cognitive impairment (MCI) can be critical for early treatment and thus has attracted more and more attention nowadays. Since first introduced, machine learning methods have been gaining increasing popularity for AD related research. Among the various identified biomarkers, magnetic resonance imaging (MRI) are widely used for the prediction of AD or MCI. However, before a machine learning algorithm can be applied, image features need to be extracted to represent the MRI images. While good representations can be pivotal to the classification performance, almost all the previous studies typically rely on human labelling to find the regions of interest (ROI) which may be correlated to AD, such as hippocampus, amygdala, precuneus, etc. This procedure requires domain knowledge and is costly and tedious. Instead of relying on extraction of ROI features, it is more promising to remove manual ROI labelling from the pipeline and directly work on the raw MRI images. In other words, we can let the machine learning methods to figure out these informative and discriminative image structures for AD classification. In this work, we propose to learn deep convolutional image features using unsupervised and supervised learning. Deep learning has emerged as a powerful tool in the machine learning community and has been successfully applied to various tasks. We thus propose to exploit deep features of MRI images based on a pre-trained large convolutional neural network (CNN) for AD and MCI classification, which spares the effort of manual ROI annotation process.

* This paper has been withdrawn by the author due to an error in the MRI data used in the experiments 

  Access Model/Code and Paper
From Kernel Machines to Ensemble Learning

Jan 04, 2014
Chunhua Shen, Fayao Liu

Ensemble methods such as boosting combine multiple learners to obtain better prediction than could be obtained from any individual learner. Here we propose a principled framework for directly constructing ensemble learning methods from kernel methods. Unlike previous studies showing the equivalence between boosting and support vector machines (SVMs), which needs a translation procedure, we show that it is possible to design boosting-like procedure to solve the SVM optimization problems. In other words, it is possible to design ensemble methods directly from SVM without any middle procedure. This finding not only enables us to design new ensemble learning methods directly from kernel methods, but also makes it possible to take advantage of those highly-optimized fast linear SVM solvers for ensemble learning. We exemplify this framework for designing binary ensemble learning as well as a new multi-class ensemble learning methods. Experimental results demonstrate the flexibility and usefulness of the proposed framework.


  Access Model/Code and Paper
Boosting through Optimization of Margin Distributions

Jan 06, 2010
Chunhua Shen, Hanxi Li

Boosting has attracted much research attention in the past decade. The success of boosting algorithms may be interpreted in terms of the margin theory. Recently it has been shown that generalization error of classifiers can be obtained by explicitly taking the margin distribution of the training data into account. Most of the current boosting algorithms in practice usually optimizes a convex loss function and do not make use of the margin distribution. In this work we design a new boosting algorithm, termed margin-distribution boosting (MDBoost), which directly maximizes the average margin and minimizes the margin variance simultaneously. This way the margin distribution is optimized. A totally-corrective optimization algorithm based on column generation is proposed to implement MDBoost. Experiments on UCI datasets show that MDBoost outperforms AdaBoost and LPBoost in most cases.

* 9 pages. To publish/Published in IEEE Transactions on Neural Networks, 21(7), July 2010 

  Access Model/Code and Paper
On the Dual Formulation of Boosting Algorithms

Dec 28, 2009
Chunhua Shen, Hanxi Li

We study boosting algorithms from a new perspective. We show that the Lagrange dual problems of AdaBoost, LogitBoost and soft-margin LPBoost with generalized hinge loss are all entropy maximization problems. By looking at the dual problems of these boosting algorithms, we show that the success of boosting algorithms can be understood in terms of maintaining a better margin distribution by maximizing margins and at the same time controlling the margin variance.We also theoretically prove that, approximately, AdaBoost maximizes the average margin, instead of the minimum margin. The duality formulation also enables us to develop column generation based optimization algorithms, which are totally corrective. We show that they exhibit almost identical classification results to that of standard stage-wise additive boosting algorithms but with much faster convergence rates. Therefore fewer weak classifiers are needed to build the ensemble using our proposed optimization technique.

* 16 pages. To publish/Published in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010 

  Access Model/Code and Paper
Unsupervised Feature Learning for Dense Correspondences across Scenes

Apr 23, 2015
Chao Zhang, Chunhua Shen, Tingzhi Shen

We propose a fast, accurate matching method for estimating dense pixel correspondences across scenes. It is a challenging problem to estimate dense pixel correspondences between images depicting different scenes or instances of the same object category. While most such matching methods rely on hand-crafted features such as SIFT, we learn features from a large amount of unlabeled image patches using unsupervised learning. Pixel-layer features are obtained by encoding over the dictionary, followed by spatial pooling to obtain patch-layer features. The learned features are then seamlessly embedded into a multi-layer match- ing framework. We experimentally demonstrate that the learned features, together with our matching model, outperforms state-of-the-art methods such as the SIFT flow, coherency sensitive hashing and the recent deformable spatial pyramid matching methods both in terms of accuracy and computation efficiency. Furthermore, we evaluate the performance of a few different dictionary learning and feature encoding methods in the proposed pixel correspondences estimation framework, and analyse the impact of dictionary learning and feature encoding with respect to the final matching performance.

* 17 pages 

  Access Model/Code and Paper
Face Identification with Second-Order Pooling

Sep 17, 2014
Fumin Shen, Chunhua Shen, Heng Tao Shen

Automatic face recognition has received significant performance improvement by developing specialised facial image representations. On the other hand, generic object recognition has rarely been applied to the face recognition. Spatial pyramid pooling of features encoded by an over-complete dictionary has been the key component of many state-of-the-art image classification systems. Inspired by its success, in this work we develop a new face image representation method inspired by the second-order pooling in Carreira et al. [1], which was originally proposed for image segmentation. The proposed method differs from the previous methods in that, we encode the densely extracted local patches by a small-size dictionary; and the facial image signatures are obtained by pooling the second-order statistics of the encoded features. We show the importance of pooling on encoded features, which is bypassed by the original second-order pooling method to avoid the high computational cost. Equipped with a simple linear classifier, the proposed method outperforms the state-of-the-art face identification performance by large margins. For example, on the LFW databases, the proposed method performs better than the previous best by around 13% accuracy.

* 9 pages 

  Access Model/Code and Paper
Face Image Classification by Pooling Raw Features

Sep 17, 2014
Fumin Shen, Chunhua Shen, Heng Tao Shen

We propose a very simple, efficient yet surprisingly effective feature extraction method for face recognition (about 20 lines of Matlab code), which is mainly inspired by spatial pyramid pooling in generic image classification. We show that features formed by simply pooling local patches over a multi-level pyramid, coupled with a linear classifier, can significantly outperform most recent face recognition methods. The simplicity of our feature extraction procedure is demonstrated by the fact that no learning is involved (except PCA whitening). We show that, multi-level spatial pooling and dense extraction of multi-scale patches play critical roles in face image classification. The extracted facial features can capture strong structural information of individual faces with no label information being used. We also find that, pre-processing on local image patches such as contrast normalization can have an important impact on the classification accuracy. In particular, on the challenging face recognition datasets of FERET and LFW-a, our method improves previous best results by more than 10% and 20%, respectively.

* 12 pages 

  Access Model/Code and Paper
Efficient Semidefinite Spectral Clustering via Lagrange Duality

Feb 22, 2014
Yan Yan, Chunhua Shen, Hanzi Wang

We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.

* 13 pages 

  Access Model/Code and Paper
Conditional Convolutions for Instance Segmentation

Mar 19, 2020
Zhi Tian, Chunhua Shen, Hao Chen

We propose a simple yet effective instance segmentation framework, termed CondInst (conditional convolutions for instance segmentation). Top-performing instance segmentation methods such as Mask R-CNN rely on ROI operations (typically ROIPool or ROIAlign) to obtain the final instance masks. In contrast, we propose to solve instance segmentation from a new perspective. Instead of using instance-wise ROIs as inputs to a network of fixed weights, we employ dynamic instance-aware networks, conditioned on instances. CondInst enjoys two advantages: 1) Instance segmentation is solved by a fully convolutional network, eliminating the need for ROI cropping and feature alignment. 2) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference. We demonstrate a simpler instance segmentation method that can achieve improved performance in both accuracy and inference speed. On the COCO dataset, we outperform a few recent methods including well-tuned Mask RCNN baselines, without longer training schedules needed. Code is available: https://github.com/aim-uofa/adet


  Access Model/Code and Paper