Models, code, and papers for "Erik Andersen":

Grammatical Templates: Improving Text Difficulty Evaluation for Language Learners

Feb 15, 2017
Shuhan Wang, Erik Andersen

Language students are most engaged while reading texts at an appropriate difficulty level. However, existing methods of evaluating text difficulty focus mainly on vocabulary and do not prioritize grammatical features, hence they do not work well for language learners with limited knowledge of grammar. In this paper, we introduce grammatical templates, the expert-identified units of grammar that students learn from class, as an important feature of text difficulty evaluation. Experimental classification results show that grammatical template features significantly improve text difficulty prediction accuracy over baseline readability features by 7.4%. Moreover, we build a simple and human-understandable text difficulty evaluation approach with 87.7% accuracy, using only 5 grammatical template features.

* The 26th International Conference on Computational Linguistics (COLING), 2016 

  Click for Model/Code and Paper
Adaptive Learning Material Recommendation in Online Language Education

May 26, 2019
Shuhan Wang, Hao Wu, Ji Hun Kim, Erik Andersen

Recommending personalized learning materials for online language learning is challenging because we typically lack data about the student's ability and the relative difficulty of learning materials. This makes it hard to recommend appropriate content that matches the student's prior knowledge. In this paper, we propose a refined hierarchical knowledge structure to model vocabulary knowledge, which enables us to automatically organize the authentic and up-to-date learning materials collected from the internet. Based on this knowledge structure, we then introduce a hybrid approach to recommend learning materials that adapts to a student's language level. We evaluate our work with an online Japanese learning tool and the results suggest adding adaptivity into material recommendation significantly increases student engagement.

* The 20th International Conference on Artificial Intelligence in Education (AIED), 2019 
* The short version of this paper is published at AIED 2019 

  Click for Model/Code and Paper
SysML: The New Frontier of Machine Learning Systems

May 01, 2019
Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar

Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, SysML, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two.

  Click for Model/Code and Paper