Models, code, and papers for "Han Qiu":

Joint Estimation of Multiple Graphical Models from High Dimensional Time Series

Oct 08, 2014
Huitong Qiu, Fang Han, Han Liu, Brian Caffo

In this manuscript we consider the problem of jointly estimating multiple graphical models in high dimensions. We assume that the data are collected from n subjects, each of which consists of T possibly dependent observations. The graphical models of subjects vary, but are assumed to change smoothly corresponding to a measure of closeness between subjects. We propose a kernel based method for jointly estimating all graphical models. Theoretically, under a double asymptotic framework, where both (T,n) and the dimension d can increase, we provide the explicit rate of convergence in parameter estimation. It characterizes the strength one can borrow across different individuals and impact of data dependence on parameter estimation. Empirically, experiments on both synthetic and real resting state functional magnetic resonance imaging (rs-fMRI) data illustrate the effectiveness of the proposed method.

* 40 pages 

  Access Model/Code and Paper
Learning Correlation Space for Time Series

May 15, 2018
Han Qiu, Hoang Thanh Lam, Francesco Fusco, Mathieu Sinn

We propose an approximation algorithm for efficient correlation search in time series data. In our method, we use Fourier transform and neural network to embed time series into a low-dimensional Euclidean space. The given space is learned such that time series correlation can be effectively approximated from Euclidean distance between corresponding embedded vectors. Therefore, search for correlated time series can be done using an index in the embedding space for efficient nearest neighbor search. Our theoretical analysis illustrates that our method's accuracy can be guaranteed under certain regularity conditions. We further conduct experiments on real-world datasets and the results show that our method indeed outperforms the baseline solution. In particular, for approximation of correlation, our method reduces the approximation loss by a half in most test cases compared to the baseline solution. For top-$k$ highest correlation search, our method improves the precision from 5\% to 20\% while the query time is similar to the baseline approach query time.

  Access Model/Code and Paper
Learning Inverse Rendering of Faces from Real-world Videos

Mar 26, 2020
Yuda Qiu, Zhangyang Xiong, Kai Han, Zhongyuan Wang, Zixiang Xiong, Xiaoguang Han

In this paper we examine the problem of inverse rendering of real face images. Existing methods decompose a face image into three components (albedo, normal, and illumination) by supervised training on synthetic face data. However, due to the domain gap between real and synthetic face images, a model trained on synthetic data often does not generalize well to real data. Meanwhile, since no ground truth for any component is available for real images, it is not feasible to conduct supervised learning on real face images. To alleviate this problem, we propose a weakly supervised training approach to train our model on real face videos, based on the assumption of consistency of albedo and normal across different frames, thus bridging the gap between real and synthetic face images. In addition, we introduce a learning framework, called IlluRes-SfSNet, to further extract the residual map to capture the global illumination effects that give the fine details that are largely ignored in existing methods. Our network is trained on both real and synthetic data, benefiting from both. We comprehensively evaluate our methods on various benchmarks, obtaining better inverse rendering results than the state-of-the-art.

* First two authors contributed equally. Code: 

  Access Model/Code and Paper
Two-phase Hair Image Synthesis by Self-Enhancing Generative Model

Feb 28, 2019
Haonan Qiu, Chuan Wang, Hang Zhu, Xiangyu Zhu, Jinjin Gu, Xiaoguang Han

Generating plausible hair image given limited guidance, such as sparse sketches or low-resolution image, has been made possible with the rise of Generative Adversarial Networks (GANs). Traditional image-to-image translation networks can generate recognizable results, but finer textures are usually lost and blur artifacts commonly exist. In this paper, we propose a two-phase generative model for high-quality hair image synthesis. The two-phase pipeline first generates a coarse image by an existing image translation model, then applies a re-generating network with self-enhancing capability to the coarse image. The self-enhancing capability is achieved by a proposed structure extraction layer, which extracts the texture and orientation map from a hair image. Extensive experiments on two tasks, Sketch2Hair and Hair Super-Resolution, demonstrate that our approach is able to synthesize plausible hair image with finer details, and outperforms the state-of-the-art.

  Access Model/Code and Paper
TEST: an End-to-End Network Traffic Examination and Identification Framework Based on Spatio-Temporal Features Extraction

Aug 26, 2019
Yi Zeng, Zihao Qi, Wencheng Chen, Yanzhe Huang, Xingxin Zheng, Han Qiu

With more encrypted network traffic gets involved in the Internet, how to effectively identify network traffic has become a top priority in the field. Accurate identification of the network traffic is the footstone of basic network services, say QoE, bandwidth allocation, and IDS. Previous identification methods either cannot deal with encrypted traffics or require experts to select tons of features to attain a relatively decent accuracy.In this paper, we present a Deep Learning based end-to-end network traffic identification framework, termed TEST, to avoid the aforementioned problems. CNN and LSTM are combined and implemented to help the machine automatically extract features from both special and time-related features of the raw traffic. The presented framework has two layers of structure, which made it possible to attain a remarkable accuracy on both encrypted traffic classification and intrusion detection tasks. The experimental results demonstrate that our model can outperform previous methods with a state-of-the-art accuracy of 99.98%.

  Access Model/Code and Paper
Learning Mutually Local-global U-nets For High-resolution Retinal Lesion Segmentation in Fundus Images

Jan 18, 2019
Zizheng Yan, Xiaoguang Han, Changmiao Wang, Yuda Qiu, Zixiang Xiong, Shuguang Cui

Diabetic retinopathy is the most important complication of diabetes. Early diagnosis of retinal lesions helps to avoid visual loss or blindness. Due to high-resolution and small-size lesion regions, applying existing methods, such as U-Nets, to perform segmentation on fundus photography is very challenging. Although downsampling the input images could simplify the problem, it loses detailed information. Conducting patch-level analysis helps reaching fine-scale segmentation yet usually leads to misunderstanding as the lack of context information. In this paper, we propose an efficient network that combines them together, not only being aware of local details but also taking fully use of the context perceptions. This is implemented by integrating the decoder parts of a global-level U-net and a patch-level one. The two streams are jointly optimized, ensuring that they are enhanced mutually. Experimental results demonstrate our new framework significantly outperforms existing patch-based and global-based methods, especially when the lesion regions are scattered and small-scaled.

* 4 pages, Accepted by ISBI 2019 

  Access Model/Code and Paper
CaricatureShop: Personalized and Photorealistic Caricature Sketching

Jul 24, 2018
Xiaoguang Han, Kangcheng Hou, Dong Du, Yuda Qiu, Yizhou Yu, Kun Zhou, Shuguang Cui

In this paper, we propose the first sketching system for interactively personalized and photorealistic face caricaturing. Input an image of a human face, the users can create caricature photos by manipulating its facial feature curves. Our system firstly performs exaggeration on the recovered 3D face model according to the edited sketches, which is conducted by assigning the laplacian of each vertex a scaling factor. To construct the mapping between 2D sketches and a vertex-wise scaling field, a novel deep learning architecture is developed. With the obtained 3D caricature model, two images are generated, one obtained by applying 2D warping guided by the underlying 3D mesh deformation and the other obtained by re-rendering the deformed 3D textured model. These two images are then seamlessly integrated to produce our final output. Due to the severely stretching of meshes, the rendered texture is of blurry appearances. A deep learning approach is exploited to infer the missing details for enhancing these blurry regions. Moreover, a relighting operation is invented to further improve the photorealism of the result. Both quantitative and qualitative experiment results validated the efficiency of our sketching system and the superiority of our proposed techniques against existing methods.

* 12 pages,16 figures,submitted to IEEE TVCG 

  Access Model/Code and Paper
Peeking into occluded joints: A novel framework for crowd pose estimation

Mar 30, 2020
Lingteng Qiu, Xuanye Zhang, Yanran Li, Guanbin Li, Xiaojun Wu, Zixiang Xiong, Xiaoguang Han, Shuguang Cui

Although occlusion widely exists in nature and remains a fundamental challenge for pose estimation, existing heatmap-based approaches suffer serious degradation on occlusions. Their intrinsic problem is that they directly localize the joints based on visual information; however, the invisible joints are lack of that. In contrast to localization, our framework estimates the invisible joints from an inference perspective by proposing an Image-Guided Progressive GCN module which provides a comprehensive understanding of both image context and pose structure. Moreover, existing benchmarks contain limited occlusions for evaluation. Therefore, we thoroughly pursue this problem and propose a novel OPEC-Net framework together with a new Occluded Pose (OCPose) dataset with 9k annotated images. Extensive quantitative and qualitative evaluations on benchmarks demonstrate that OPEC-Net achieves significant improvements over recent leading works. Notably, our OCPose is the most complex occlusion dataset with respect to average IoU between adjacent instances. Source code and OCPose will be publicly available.

* The code of OPEC-Net is available at: 

  Access Model/Code and Paper
A Fine-Grained Facial Expression Database for End-to-End Multi-Pose Facial Expression Recognition

Jul 25, 2019
Wenxuan Wang, Qiang Sun, Tao Chen, Chenjie Cao, Ziqi Zheng, Guoqiang Xu, Han Qiu, Yanwei Fu

The recent research of facial expression recognition has made a lot of progress due to the development of deep learning technologies, but some typical challenging problems such as the variety of rich facial expressions and poses are still not resolved. To solve these problems, we develop a new Facial Expression Recognition (FER) framework by involving the facial poses into our image synthesizing and classification process. There are two major novelties in this work. First, we create a new facial expression dataset of more than 200k images with 119 persons, 4 poses and 54 expressions. To our knowledge this is the first dataset to label faces with subtle emotion changes for expression recognition purpose. It is also the first dataset that is large enough to validate the FER task on unbalanced poses, expressions, and zero-shot subject IDs. Second, we propose a facial pose generative adversarial network (FaPE-GAN) to synthesize new facial expression images to augment the data set for training purpose, and then learn a LightCNN based Fa-Net model for expression classification. Finally, we advocate four novel learning tasks on this dataset. The experimental results well validate the effectiveness of the proposed approach.

* 10 pages, 8 figures 

  Access Model/Code and Paper
Learning to Augment Expressions for Few-shot Fine-grained Facial Expression Recognition

Jan 17, 2020
Wenxuan Wang, Yanwei Fu, Qiang Sun, Tao Chen, Chenjie Cao, Ziqi Zheng, Guoqiang Xu, Han Qiu, Yu-Gang Jiang, Xiangyang Xue

Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researchers. Since humans have rich emotions and developed musculature, there exist a lot of fine-grained expressions in real-world applications. However, it is extremely time-consuming to collect and annotate a large number of facial images, of which may even require psychologists to correctly categorize them. To the best of our knowledge, the existing expression datasets are only limited to several basic facial expressions, which are not sufficient to support our ambitions in developing successful human-computer interaction systems. To this end, a novel Fine-grained Facial Expression Database - F2ED is contributed in this paper, and it includes more than 200k images with 54 facial expressions from 119 persons. Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we further evaluate several tasks of few-shot expression learning by virtue of our F2ED, which are to recognize the facial expressions given only few training instances. These tasks mimic human performance to learn robust and general representation from few examples. To address such few-shot tasks, we propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images and thus augmenting the instances of few-shot expression classes. Extensive experiments are conducted on F2ED and existing facial expression datasets, i.e., JAFFE and FER2013, to validate the efficacy of our F2ED in pre-training facial expression recognition network and the effectiveness of our proposed approach Comp-GAN to improve the performance of few-shot recognition tasks.

* 17 pages, 18 figures 

  Access Model/Code and Paper
So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification

Dec 19, 2019
Xiao Xiang Zhu, Jingliang Hu, Chunping Qiu, Yilei Shi, Jian Kang, Lichao Mou, Hossein Bagheri, Matthias Häberle, Yuansheng Hua, Rong Huang, Lloyd Hughes, Hao Li, Yao Sun, Guichen Zhang, Shiyao Han, Michael Schmitt, Yuanyuan Wang

Access to labeled reference data is one of the grand challenges in supervised machine learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges such as urbanization and climate change using state-of-the-art machine learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark dataset named "So2Sat LCZ42," which consists of local climate zone (LCZ) labels of about half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe. This dataset was labeled by 15 domain experts following a carefully designed labeling work flow and evaluation process over a period of six months. As rarely done in other labeled remote sensing dataset, we conducted rigorous quality assessment by domain experts. The dataset achieved an overall confidence of 85%. We believe this LCZ dataset is a first step towards an unbiased globallydistributed dataset for urban growth monitoring using machine learning methods, because LCZ provide a rather objective measure other than many other semantic land use and land cover classifications. It provides measures of the morphology, compactness, and height of urban areas, which are less dependent on human and culture. This dataset can be accessed from

* Article submitted to IEEE Geoscience and Remote Sensing Magazine 

  Access Model/Code and Paper
Wrapper Feature Selection Algorithm for the Optimization of an Indicator System of Patent Value Assessment

Jan 21, 2020
Yihui Qiu, Chiyu Zhang

Effective patent value assessment provides decision support for patent transection and promotes the practical application of patent technology. The limitations of previous research on patent value assessment were analyzed in this work, and a wrapper-mode feature selection algorithm that is based on classifier prediction accuracy was developed. Verification experiments on multiple UCI standard datasets indicated that the algorithm effectively reduced the size of the feature set and significantly enhanced the prediction accuracy of the classifier. When the algorithm was utilized to establish an indicator system of patent value assessment, the size of the system was reduced, and the generalization performance of the classifier was enhanced. Sequential forward selection was applied to further reduce the size of the indicator set and generate an optimal indicator system of patent value assessment.

* Qiu, Y., & Zhang, C.. (2018, September). Wrapper feature selection algorithm for the optimization of an indicator system of patent value assessment. IPPTA: Quarterly Journal ofIndian Pulp and Paper Technical Association, 30(3), 300-308 

  Access Model/Code and Paper
Discriminative Dimension Reduction based on Mutual Information

Dec 11, 2019
Orod Razeghi, Guoping Qiu

The "curse of dimensionality" is a well-known problem in pattern recognition. A widely used approach to tackling the problem is a group of subspace methods, where the original features are projected onto a new space. The lower dimensional subspace is then used to approximate the original features for classification. However, most subspace methods were not originally developed for classification. We believe that direct adoption of these subspace methods for pattern classification should not be considered best practice. In this paper, we present a new information theory based algorithm for selecting subspaces, which can always result in superior performance over conventional methods. This paper makes the following main contributions: i) it improves a common practice widely used by practitioners in the field of pattern recognition, ii) it develops an information theory based technique for systematically selecting the subspaces that are discriminative and therefore are suitable for pattern recognition/classification purposes, iii) it presents extensive experimental results on a variety of computer vision and pattern recognition tasks to illustrate that the subspaces selected based on maximum mutual information criterion will always enhance performance regardless of the classification techniques used.

  Access Model/Code and Paper
Generating Highly Relevant Questions

Oct 08, 2019
Jiazuo Qiu, Deyi Xiong

The neural seq2seq based question generation (QG) is prone to generating generic and undiversified questions that are poorly relevant to the given passage and target answer. In this paper, we propose two methods to address the issue. (1) By a partial copy mechanism, we prioritize words that are morphologically close to words in the input passage when generating questions; (2) By a QA-based reranker, from the n-best list of question candidates, we select questions that are preferred by both the QA and QG model. Experiments and analyses demonstrate that the proposed two methods substantially improve the relevance of generated questions to passages and answers.

* Accepted by EMNLP 2019 

  Access Model/Code and Paper
Sequential Adaptive Design for Jump Regression Estimation

Apr 02, 2019
Chiwoo Park, Peihua Qiu

Selecting input data or design points for statistical models has been of great interest in sequential design and active learning. In this paper, we present a new strategy of selecting the design points for a regression model when the underlying regression function is discontinuous. Two main motivating examples are (1) compressed material imaging with the purpose of accelerating the imaging speed and (2) design for regression analysis over a phase diagram in chemistry. In both examples, the underlying regression functions have discontinuities, so many of the existing design optimization approaches cannot be applied for the two examples because they mostly assume a continuous regression function. There are some studies for estimating a discontinuous regression function from its noisy observations, but all noisy observations are typically provided in advance in these studies. In this paper, we develop a design strategy of selecting the design points for regression analysis with discontinuities. We first review the existing approaches relevant to design optimization and active learning for regression analysis and discuss their limitations in handling a discontinuous regression function. We then present our novel design strategy for a regression analysis with discontinuities: some statistical properties with a fixed design will be presented first, and then these properties will be used to propose a new criterion of selecting the design points for the regression analysis. Sequential design of experiments with the new criterion will be presented with numerical examples.

  Access Model/Code and Paper
Adaptive Performance Assessment For Drivers Through Behavioral Advantage

Apr 26, 2018
Dicong Qiu, Karthik Paga

The potential positive impact of autonomous driving and driver assistance technolo- gies have been a major impetus over the last decade. On the flip side, it has been a challenging problem to analyze the performance of human drivers or autonomous driving agents quantitatively. In this work, we propose a generic method that compares the performance of drivers or autonomous driving agents even if the environmental conditions are different, by using the driver behavioral advantage instead of absolute metrics, which efficiently removes the environmental factors. A concrete application of the method is also presented, where the performance of more than 100 truck drivers was evaluated and ranked in terms of fuel efficiency, covering more than 90,000 trips spanning an average of 300 miles in a variety of driving conditions and environments.

* 10 pages, 3 figures. Appeared in the Proceedings of the 1st Hackauton Machine Learning Hackathon (Hackauton 2018), Pittsburgh, United States, 2018. First Place Winner (Fuel Efficiency Problem); Most Innovative Prize 

  Access Model/Code and Paper
Enhancing Evolutionary Optimization in Uncertain Environments by Allocating Evaluations via Multi-armed Bandit Algorithms

Mar 26, 2018
Xin Qiu, Risto Miikkulainen

Optimization problems with uncertain fitness functions are common in the real world, and present unique challenges for evolutionary optimization approaches. Existing issues include excessively expensive evaluation, lack of solution reliability, and incapability in maintaining high overall fitness during optimization. Using conversion rate optimization as an example, this paper proposes a series of new techniques for addressing these issues. The main innovation is to augment evolutionary algorithms by allocating evaluation budget through multi-armed bandit algorithms. Experimental results demonstrate that multi-armed bandit algorithms can be used to allocate evaluations efficiently, select the winning solution reliably and increase overall fitness during exploration. The proposed methods can be generalized to any optimization problems with noisy fitness functions.

* 8 pages, 3 figures 

  Access Model/Code and Paper
Clustering by Deep Nearest Neighbor Descent (D-NND): A Density-based Parameter-Insensitive Clustering Method

Dec 07, 2015
Teng Qiu, Yongjie Li

Most density-based clustering methods largely rely on how well the underlying density is estimated. However, density estimation itself is also a challenging problem, especially the determination of the kernel bandwidth. A large bandwidth could lead to the over-smoothed density estimation in which the number of density peaks could be less than the true clusters, while a small bandwidth could lead to the under-smoothed density estimation in which spurious density peaks, or called the "ripple noise", would be generated in the estimated density. In this paper, we propose a density-based hierarchical clustering method, called the Deep Nearest Neighbor Descent (D-NND), which could learn the underlying density structure layer by layer and capture the cluster structure at the same time. The over-smoothed density estimation could be largely avoided and the negative effect of the under-estimated cases could be also largely reduced. Overall, D-NND presents not only the strong capability of discovering the underlying cluster structure but also the remarkable reliability due to its insensitivity to parameters.

* 28 pages, 14 figures 

  Access Model/Code and Paper
Compositional Dictionaries for Domain Adaptive Face Recognition

Sep 12, 2015
Qiang Qiu, Rama Chellappa

We present a dictionary learning approach to compensate for the transformation of faces due to changes in view point, illumination, resolution, etc. The key idea of our approach is to force domain-invariant sparse coding, i.e., design a consistent sparse representation of the same face in different domains. In this way, classifiers trained on the sparse codes in the source domain consisting of frontal faces for example can be applied to the target domain (consisting of faces in different poses, illumination conditions, etc) without much loss in recognition accuracy. The approach is to first learn a domain base dictionary, and then describe each domain shift (identity, pose, illumination) using a sparse representation over the base dictionary. The dictionary adapted to each domain is expressed as sparse linear combinations of the base dictionary. In the context of face recognition, with the proposed compositional dictionary approach, a face image can be decomposed into sparse representations for a given subject, pose and illumination respectively. This approach has three advantages: first, the extracted sparse representation for a subject is consistent across domains and enables pose and illumination insensitive face recognition. Second, sparse representations for pose and illumination can subsequently be used to estimate the pose and illumination condition of a face image. Finally, by composing sparse representations for subject and the different domains, we can also perform pose alignment and illumination normalization. Extensive experiments using two public face datasets are presented to demonstrate the effectiveness of our approach for face recognition.

* Transactions on Image Processing, 2015 

  Access Model/Code and Paper