Models, code, and papers for "Haoyi Xiong":

Ultrafast Photorealistic Style Transfer via Neural Architecture Search

Dec 05, 2019
Jie An, Haoyi Xiong, Jun Huan, Jiebo Luo

The key challenge in photorealistic style transfer is that an algorithm should faithfully transfer the style of a reference photo to a content photo while the generated image should look like one captured by a camera. Although several photorealistic style transfer algorithms have been proposed, they need to rely on post- and/or pre-processing to make the generated images look photorealistic. If we disable the additional processing, these algorithms would fail to produce plausible photorealistic stylization in terms of detail preservation and photorealism. In this work, we propose an effective solution to these issues. Our method consists of a construction step (C-step) to build a photorealistic stylization network and a pruning step (P-step) for acceleration. In the C-step, we propose a dense auto-encoder named PhotoNet based on a carefully designed pre-analysis. PhotoNet integrates a feature aggregation module (BFA) and instance normalized skip links (INSL). To generate faithful stylization, we introduce multiple style transfer modules in the decoder and INSLs. PhotoNet significantly outperforms existing algorithms in terms of both efficiency and effectiveness. In the P-step, we adopt a neural architecture search method to accelerate PhotoNet. We propose an automatic network pruning framework in the manner of teacher-student learning for photorealistic stylization. The network architecture named PhotoNAS resulted from the search achieves significant acceleration over PhotoNet while keeping the stylization effects almost intact. We conduct extensive experiments on both image and video transfer. The results show that our method can produce favorable results while achieving 20-30 times acceleration in comparison with the existing state-of-the-art approaches. It is worth noting that the proposed algorithm accomplishes better performance without any pre- or post-processing.

  Access Model/Code and Paper
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent

Jan 18, 2019
Wenqing Hu, Zhanxing Zhu, Haoyi Xiong, Jun Huan

We interpret the variational inference of the Stochastic Gradient Descent (SGD) as minimizing a new potential function named the \textit{quasi-potential}. We analytically construct the quasi-potential function in the case when the loss function is convex and admits only one global minimum point. We show in this case that the quasi-potential function is related to the noise covariance structure of SGD via a partial differential equation of Hamilton-Jacobi type. This relation helps us to show that anisotropic noise leads to faster escape than isotropic noise. We then consider the dynamics of SGD in the case when the loss function is non-convex and admits several different local minima. In this case, we demonstrate an example that shows how the noise covariance structure plays a role in "implicit regularization", a phenomenon in which SGD favors some particular local minimum points. This is done through the relation between the noise covariance structure and the quasi-potential function. Our analysis is based on Large Deviations Theory (LDT), and they are validated by numerical experiments.

* first and preliminary version 

  Access Model/Code and Paper
Fast Universal Style Transfer for Artistic and Photorealistic Rendering

Jul 06, 2019
Jie An, Haoyi Xiong, Jiebo Luo, Jun Huan, Jinwen Ma

Universal style transfer is an image editing task that renders an input content image using the visual style of arbitrary reference images, including both artistic and photorealistic stylization. Given a pair of images as the source of content and the reference of style, existing solutions usually first train an auto-encoder (AE) to reconstruct the image using deep features and then embeds pre-defined style transfer modules into the AE reconstruction procedure to transfer the style of the reconstructed image through modifying the deep features. While existing methods typically need multiple rounds of time-consuming AE reconstruction for better stylization, our work intends to design novel neural network architectures on top of AE for fast style transfer with fewer artifacts and distortions all in one pass of end-to-end inference. To this end, we propose two network architectures named ArtNet and PhotoNet to improve artistic and photo-realistic stylization, respectively. Extensive experiments demonstrate that ArtNet generates images with fewer artifacts and distortions against the state-of-the-art artistic transfer algorithms, while PhotoNet improves the photorealistic stylization results by creating sharp images faithfully preserving rich details of the input content. Moreover, ArtNet and PhotoNet can achieve 3X to 100X speed-up over the state-of-the-art algorithms, which is a major advantage for large content images.

  Access Model/Code and Paper
StyleNAS: An Empirical Study of Neural Architecture Search to Uncover Surprisingly Fast End-to-End Universal Style Transfer Networks

Jun 06, 2019
Jie An, Haoyi Xiong, Jinwen Ma, Jiebo Luo, Jun Huan

Neural Architecture Search (NAS) has been widely studied for designing discriminative deep learning models such as image classification, object detection, and semantic segmentation. As a large number of priors have been obtained through the manual design of architectures in the fields, NAS is usually considered as a supplement approach. In this paper, we have significantly expanded the application areas of NAS by performing an empirical study of NAS to search generative models, or specifically, auto-encoder based universal style transfer, which lacks systematic exploration, if any, from the architecture search aspect. In our work, we first designed a search space where common operators for image style transfer such as VGG-based encoders, whitening and coloring transforms (WCT), convolution kernels, instance normalization operators, and skip connections were searched in a combinatorial approach. With a simple yet effective parallel evolutionary NAS algorithm with multiple objectives, we derived the first group of end-to-end deep networks for universal photorealistic style transfer. Comparing to random search, a NAS method that is gaining popularity recently, we demonstrated that carefully designed search strategy leads to much better architecture design. Finally compared to existing universal style transfer networks for photorealistic rendering such as PhotoWCT that stacks multiple well-trained auto-encoders and WCT transforms in a non-end-to-end manner, the architectures designed by StyleNAS produce better style-transferred images with details preserving, using a tiny number of operators/parameters, and enjoying around 500x inference time speed-up.

  Access Model/Code and Paper
CSWA: Aggregation-Free Spatial-Temporal Community Sensing

Nov 15, 2017
Jiang Bian, Haoyi Xiong, Yanjie Fu, Sajal K. Das

In this paper, we present a novel community sensing paradigm -- {C}ommunity {S}ensing {W}ithout {A}ggregation}. CSWA is designed to obtain the environment information (e.g., air pollution or temperature) in each subarea of the target area, without aggregating sensor and location data collected by community members. CSWA operates on top of a secured peer-to-peer network over the community members and proposes a novel \emph{Decentralized Spatial-Temporal Compressive Sensing} framework based on \emph{Parallelized Stochastic Gradient Descent}. Through learning the \emph{low-rank structure} via distributed optimization, CSWA approximates the value of the sensor data in each subarea (both covered and uncovered) for each sensing cycle using the sensor data locally stored in each member's mobile device. Simulation experiments based on real-world datasets demonstrate that CSWA exhibits low approximation error (i.e., less than $0.2 ^\circ$C in city-wide temperature sensing task and $10$ units of PM2.5 index in urban air pollution sensing) and performs comparably to (sometimes better than) state-of-the-art algorithms based on the data aggregation and centralized computation.

* This paper has been accepted by AAAI 2018. First two authors are equally contributed 

  Access Model/Code and Paper
Towards Making Deep Transfer Learning Never Hurt

Nov 18, 2019
Ruosi Wan, Haoyi Xiong, Xingjian Li, Zhanxing Zhu, Jun Huan

Transfer learning have been frequently used to improve deep neural network training through incorporating weights of pre-trained networks as the starting-point of optimization for regularization. While deep transfer learning can usually boost the performance with better accuracy and faster convergence, transferring weights from inappropriate networks hurts training procedure and may lead to even lower accuracy. In this paper, we consider deep transfer learning as minimizing a linear combination of empirical loss and regularizer based on pre-trained weights, where the regularizer would restrict the training procedure from lowering the empirical loss, with conflicted descent directions (e.g., derivatives). Following the view, we propose a novel strategy making regularization-based Deep Transfer learning Never Hurt (DTNH) that, for each iteration of training procedure, computes the derivatives of the two terms separately, then re-estimates a new descent direction that does not hurt the empirical loss minimization while preserving the regularization affects from the pre-trained weights. Extensive experiments have been done using common transfer learning regularizers, such as L2-SP and knowledge distillation, on top of a wide range of deep transfer learning benchmarks including Caltech, MIT indoor 67, CIFAR-10 and ImageNet. The empirical results show that the proposed descent direction estimation strategy DTNH can always improve the performance of deep transfer learning tasks based on all above regularizers, even when transferring pre-trained weights from inappropriate networks. All in all, DTNH strategy can improve state-of-the-art regularizers in all cases with 0.1%--7% higher accuracy in all experiments.

* accapted as long paper at the 19th IEEE International Conference on Data Mining, 2019 
* 10 pages 

  Access Model/Code and Paper
The Multiplicative Noise in Stochastic Gradient Descent: Data-Dependent Regularization, Continuous and Discrete Approximation

Jun 18, 2019
Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Zhanxing Zhu

The randomness in Stochastic Gradient Descent (SGD) is considered to play a central role in the observed strong generalization capability of deep learning. In this work, we re-interpret the stochastic gradient of vanilla SGD as a matrix-vector product of the matrix of gradients and a random noise vector (namely multiplicative noise, M-Noise). Comparing to the existing theory that explains SGD using additive noise, the M-Noise helps establish a general case of SGD, namely Multiplicative SGD (M-SGD). The advantage of M-SGD is that it decouples noise from parameters, providing clear insights at the inherent randomness in SGD. Our analysis shows that 1) the M-SGD family, including the vanilla SGD, can be viewed as an minimizer with a data-dependent regularizer resemble of Rademacher complexity, which contributes to the implicit bias of M-SGD; 2) M-SGD holds a strong convergence to a continuous stochastic differential equation under the Gaussian noise assumption, ensuring the path-wise closeness of the discrete and continuous dynamics. For applications, based on M-SGD we design a fast algorithm to inject noise of different types (e.g., Gaussian and Bernoulli) into gradient descent. Based on the algorithm, we further demonstrate that M-SGD can approximate SGD with various noise types and recover the generalization performance, which reveals the potential of M-SGD to solve practical deep learning problems, e.g., large batch training with strong generalization performance. We have validated our observations on multiple practical deep learning scenarios.

  Access Model/Code and Paper
FWDA: a Fast Wishart Discriminant Analysis with its Application to Electronic Health Records Data Classification

Apr 25, 2017
Haoyi Xiong, Wei Cheng, Wenqing Hu, Jiang Bian, Zhishan Guo

Linear Discriminant Analysis (LDA) on Electronic Health Records (EHR) data is widely-used for early detection of diseases. Classical LDA for EHR data classification, however, suffers from two handicaps: the ill-posed estimation of LDA parameters (e.g., covariance matrix), and the "linear inseparability" of EHR data. To handle these two issues, in this paper, we propose a novel classifier FWDA -- Fast Wishart Discriminant Analysis, that makes predictions in an ensemble way. Specifically, FWDA first surrogates the distribution of inverse covariance matrices using a Wishart distribution estimated from the training data, then "weighted-averages" the classification results of multiple LDA classifiers parameterized by the sampled inverse covariance matrices via a Bayesian Voting scheme. The weights for voting are optimally updated to adapt each new input data, so as to enable the nonlinear classification. Theoretical analysis indicates that FWDA possesses a fast convergence rate and a robust performance on high dimensional data. Extensive experiments on large-scale EHR dataset show that our approach outperforms state-of-the-art algorithms by a large margin.

  Access Model/Code and Paper
Curriculum Audiovisual Learning

Jan 26, 2020
Di Hu, Zheng Wang, Haoyi Xiong, Dong Wang, Feiping Nie, Dejing Dou

Associating sound and its producer in complex audiovisual scene is a challenging task, especially when we are lack of annotated training data. In this paper, we present a flexible audiovisual model that introduces a soft-clustering module as the audio and visual content detector, and regards the pervasive property of audiovisual concurrency as the latent supervision for inferring the correlation among detected contents. To ease the difficulty of audiovisual learning, we propose a novel curriculum learning strategy that trains the model from simple to complex scene. We show that such ordered learning procedure rewards the model the merits of easy training and fast convergence. Meanwhile, our audiovisual model can also provide effective unimodal representation and cross-modal alignment performance. We further deploy the well-trained model into practical audiovisual sound localization and separation task. We show that our localization model significantly outperforms existing methods, based on which we show comparable performance in sound separation without referring external visual supervision. Our video demo can be found at

  Access Model/Code and Paper
Provably Good Early Detection of Diseases using Non-Sparse Covariance-Regularized Linear Discriminant Analysis

Oct 19, 2016
Haoyi Xiong, Yanjie Fu, Wenqing Hu, Guanling Chen, Laura E. Barnes

To improve the performance of Linear Discriminant Analysis (LDA) for early detection of diseases using Electronic Health Records (EHR) data, we propose \TheName{} -- a novel framework for \emph{\underline{E}HR based \underline{E}arly \underline{D}etection of \underline{D}iseases} on top of \emph{Covariance-Regularized} LDA models. Specifically, \TheName\ employs a \emph{non-sparse} inverse covariance matrix (or namely precision matrix) estimator derived from graphical lasso and incorporates the estimator into LDA classifiers to improve classification accuracy. Theoretical analysis on \TheName\ shows that it can bound the expected error rate of LDA classification, under certain assumptions. Finally, we conducted extensive experiments using a large-scale real-world EHR dataset -- CHSN. We compared our solution with other regularized LDA and downstream classifiers. The result shows \TheName\ outperforms all baselines and backups our theoretical analysis.

  Access Model/Code and Paper
CT-Mapper: Mapping Sparse Multimodal Cellular Trajectories using a Multilayer Transportation Network

Apr 22, 2016
Fereshteh Asgari, Alexis Sultan, Haoyi Xiong, Vincent Gauthier, Mounim El-Yacoubi

Mobile phone data have recently become an attractive source of information about mobility behavior. Since cell phone data can be captured in a passive way for a large user population, they can be harnessed to collect well-sampled mobility information. In this paper, we propose CT-Mapper, an unsupervised algorithm that enables the mapping of mobile phone traces over a multimodal transport network. One of the main strengths of CT-Mapper is its capability to map noisy sparse cellular multimodal trajectories over a multilayer transportation network where the layers have different physical properties and not only to map trajectories associated with a single layer. Such a network is modeled by a large multilayer graph in which the nodes correspond to metro/train stations or road intersections and edges correspond to connections between them. The mapping problem is modeled by an unsupervised HMM where the observations correspond to sparse user mobile trajectories and the hidden states to the multilayer graph nodes. The HMM is unsupervised as the transition and emission probabilities are inferred using respectively the physical transportation properties and the information on the spatial coverage of antenna base stations. To evaluate CT-Mapper we collected cellular traces with their corresponding GPS trajectories for a group of volunteer users in Paris and vicinity (France). We show that CT-Mapper is able to accurately retrieve the real cell phone user paths despite the sparsity of the observed trace trajectories. Furthermore our transition probability model is up to 20% more accurate than other naive models.

* Under revision in Computer Communication Journal 

  Access Model/Code and Paper
DELTA: DEep Learning Transfer using Feature Map with Attention for Convolutional Networks

Jan 26, 2019
Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Jun Huan

Transfer learning through fine-tuning a pre-trained neural network with an extremely large dataset, such as ImageNet, can significantly accelerate training while the accuracy is frequently bottlenecked by the limited dataset size of the new target task. To solve the problem, some regularization methods, constraining the outer layer weights of the target network using the starting point as references (SPAR), have been studied. In this paper, we propose a novel regularized transfer learning framework DELTA, namely DEep Learning Transfer using Feature Map with Attention. Instead of constraining the weights of neural network, DELTA aims to preserve the outer layer outputs of the target network. Specifically, in addition to minimizing the empirical loss, DELTA intends to align the outer layer outputs of two networks, through constraining a subset of feature maps that are precisely selected by attention that has been learned in an supervised learning manner. We evaluate DELTA with the state-of-the-art algorithms, including L2 and L2-SP. The experiment results show that our proposed method outperforms these baselines with higher accuracy for new tasks.

* Accepted at ICLR 2019 

  Access Model/Code and Paper
Parameter-Free Style Projection for Arbitrary Style Transfer

Mar 17, 2020
Siyu Huang, Haoyi Xiong, Tianyang Wang, Qingzhong Wang, Zeyu Chen, Jun Huan, Dejing Dou

Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on an arbitrary style image. In this task the content-style feature transformation is a critical component for a proper fusion of features. Existing feature transformation algorithms often suffer from unstable learning, loss of content and style details, and non-natural stroke patterns. To mitigate these issues, this paper proposes a parameter-free algorithm, Style Projection, for fast yet effective content-style transformation. To leverage the proposed Style Projection~component, this paper further presents a real-time feed-forward model for arbitrary style transfer, including a regularization for matching the content semantics between inputs and outputs. Extensive experiments have demonstrated the effectiveness and efficiency of the proposed method in terms of qualitative analysis, quantitative evaluation, and user study.

* 9 pages, 12 figures 

  Access Model/Code and Paper
SecureGBM: Secure Multi-Party Gradient Boosting

Nov 27, 2019
Zhi Fengy, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, Licheng Wang, Zeyu Chen, Shengwen Yang, Liping Liu, Jun Huan

Federated machine learning systems have been widely used to facilitate the joint data analytics across the distributed datasets owned by the different parties that do not trust each others. In this paper, we proposed a novel Gradient Boosting Machines (GBM) framework SecureGBM built-up with a multi-party computation model based on semi-homomorphic encryption, where every involved party can jointly obtain a shared Gradient Boosting machines model while protecting their own data from the potential privacy leakage and inferential identification. More specific, our work focused on a specific "dual--party" secure learning scenario based on two parties -- both party own an unique view (i.e., attributes or features) to the sample group of samples while only one party owns the labels. In such scenario, feature and label data are not allowed to share with others. To achieve the above goal, we firstly extent -- LightGBM -- a well known implementation of tree-based GBM through covering its key operations for training and inference with SEAL homomorphic encryption schemes. However, the performance of such re-implementation is significantly bottle-necked by the explosive inflation of the communication payloads, based on ciphertexts subject to the increasing length of plaintexts. In this way, we then proposed to use stochastic approximation techniques to reduced the communication payloads while accelerating the overall training procedure in a statistical manner. Our experiments using the real-world data showed that SecureGBM can well secure the communication and computation of LightGBM training and inference procedures for the both parties while only losing less than 3% AUC, using the same number of iterations for gradient boosting, on a wide range of benchmark datasets.

* The first two authors contributed equally to the manuscript. The paper has been accepted for publication in IEEE BigData 2019 

  Access Model/Code and Paper
Implicit Tubular Surface Generation Guided by Centerline

Jun 09, 2016
Haoyin Zhou, James K. Min, Guanglei Xiong

Most machine learning-based coronary artery segmentation methods represent the vascular lumen surface in an implicit way by the centerline and the associated lumen radii, which makes the subsequent modeling process to generate a whole piece of watertight coronary artery tree model difficult. To solve this problem, in this paper, we propose a modeling method with the learning-based segmentation results by (1) considering mesh vertices as physical particles and using interaction force model and particle expansion model to generate uniformly distributed point cloud on the implicit lumen surface and; (2) doing incremental Delaunay-based triangulation. Our method has the advantage of being able to consider the complex shape of the coronary artery tree as a whole piece; hence no extra stitching or intersection removal algorithm is needed to generate a watertight model. Experiment results demonstrate that our method is capable of generating high quality mesh model which is highly consistent with the given implicit vascular lumen surface, with an average error of 0.08 mm.

  Access Model/Code and Paper
Fast Segmentation of Left Ventricle in CT Images by Explicit Shape Regression using Random Pixel Difference Features

Jul 28, 2015
Peng Sun, Haoyin Zhou, Devon Lundine, James K. Min, Guanglei Xiong

Recently, machine learning has been successfully applied to model-based left ventricle (LV) segmentation. The general framework involves two stages, which starts with LV localization and is followed by boundary delineation. Both are driven by supervised learning techniques. When compared to previous non-learning-based methods, several advantages have been shown, including full automation and improved accuracy. However, the speed is still slow, in the order of several seconds, for applications involving a large number of cases or case loads requiring real-time performance. In this paper, we propose a fast LV segmentation algorithm by joint localization and boundary delineation via training explicit shape regressor with random pixel difference features. Tested on 3D cardiac computed tomography (CT) image volumes, the average running time of the proposed algorithm is 1.2 milliseconds per case. On a dataset consisting of 139 CT volumes, a 5-fold cross validation shows the segmentation error is $1.21 \pm 0.11$ for LV endocardium and $1.23 \pm 0.11$ millimeters for epicardium. Compared with previous work, the proposed method is more stable (lower standard deviation) without significant compromise to the accuracy.

* 8 pages, link to a video demo 

  Access Model/Code and Paper