Models, code, and papers for "Honglin Qiao":

Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications

Feb 12, 2018
Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao

To ensure undisrupted business, large Internet companies need to closely monitor various KPIs (e.g., Page Views, number of online users, and number of orders) of its Web applications, to accurately detect anomalies and trigger timely troubleshooting/mitigation. However, anomaly detection for these seasonal KPIs with various patterns and data quality has been a great challenge, especially without labels. In this paper, we proposed Donut, an unsupervised anomaly detection algorithm based on VAE. Thanks to a few of our key techniques, Donut greatly outperforms a state-of-arts supervised ensemble approach and a baseline VAE approach, and its best F-scores range from 0.75 to 0.9 for the studied KPIs from a top global Internet company. We come up with a novel KDE interpretation of reconstruction for Donut, making it the first VAE-based anomaly detection algorithm with solid theoretical explanation.

* 12 pages (including references), 17 figures, submitted to WWW 2018: The 2018 Web Conference, April 23--27, 2018, Lyon, France. The contents discarded from the conference version due to the 9-page limitation are also included in this version 

  Click for Model/Code and Paper