Models, code, and papers for "Jaime Carbonell":

Towards more Reliable Transfer Learning

Jul 06, 2018
Zirui Wang, Jaime Carbonell

Multi-source transfer learning has been proven effective when within-target labeled data is scarce. Previous work focuses primarily on exploiting domain similarities and assumes that source domains are richly or at least comparably labeled. While this strong assumption is never true in practice, this paper relaxes it and addresses challenges related to sources with diverse labeling volume and diverse reliability. The first challenge is combining domain similarity and source reliability by proposing a new transfer learning method that utilizes both source-target similarities and inter-source relationships. The second challenge involves pool-based active learning where the oracle is only available in source domains, resulting in an integrated active transfer learning framework that incorporates distribution matching and uncertainty sampling. Extensive experiments on synthetic and two real-world datasets clearly demonstrate the superiority of our proposed methods over several baselines including state-of-the-art transfer learning methods.

* ECML-PKDD 2018 

  Access Model/Code and Paper
Self-Paced Multitask Learning with Shared Knowledge

Jun 19, 2017
Keerthiram Murugesan, Jaime Carbonell

This paper introduces self-paced task selection to multitask learning, where instances from more closely related tasks are selected in a progression of easier-to-harder tasks, to emulate an effective human education strategy, but applied to multitask machine learning. We develop the mathematical foundation for the approach based on iterative selection of the most appropriate task, learning the task parameters, and updating the shared knowledge, optimizing a new bi-convex loss function. This proposed method applies quite generally, including to multitask feature learning, multitask learning with alternating structure optimization, etc. Results show that in each of the above formulations self-paced (easier-to-harder) task selection outperforms the baseline version of these methods in all the experiments.

  Access Model/Code and Paper
Multi-Task Multiple Kernel Relationship Learning

Mar 02, 2017
Keerthiram Murugesan, Jaime Carbonell

This paper presents a novel multitask multiple kernel learning framework that efficiently learns the kernel weights leveraging the relationship across multiple tasks. The idea is to automatically infer this task relationship in the \textit{RKHS} space corresponding to the given base kernels. The problem is formulated as a regularization-based approach called \textit{Multi-Task Multiple Kernel Relationship Learning} (\textit{MK-MTRL}), which models the task relationship matrix from the weights learned from latent feature spaces of task-specific base kernels. Unlike in previous work, the proposed formulation allows one to incorporate prior knowledge for simultaneously learning several related tasks. We propose an alternating minimization algorithm to learn the model parameters, kernel weights and task relationship matrix. In order to tackle large-scale problems, we further propose a two-stage \textit{MK-MTRL} online learning algorithm and show that it significantly reduces the computational time, and also achieves performance comparable to that of the joint learning framework. Experimental results on benchmark datasets show that the proposed formulations outperform several state-of-the-art multitask learning methods.

* 17th SIAM International Conference on Data Mining (SDM 2017), Houston, Texas, USA, 2017 

  Access Model/Code and Paper
The Nonlinearity Coefficient - Predicting Overfitting in Deep Neural Networks

Jun 01, 2018
George Philipp, Jaime G. Carbonell

For a long time, designing neural architectures that exhibit high performance was considered a dark art that required expert hand-tuning. One of the few well-known guidelines for architecture design is the avoidance of exploding gradients, though even this guideline has remained relatively vague and circumstantial. We introduce the nonlinearity coefficient (NLC), a measurement of the complexity of the function computed by a neural network that is based on the magnitude of the gradient. Via an extensive empirical study, we show that the NLC is a powerful predictor of test error and that attaining a right-sized NLC is essential for optimal performance. The NLC exhibits a range of intriguing and important properties. It is closely tied to the amount of information gained from computing a single network gradient. It is tied to the error incurred when replacing the nonlinearity operations in the network with linear operations. It is not susceptible to the confounders of multiplicative scaling, additive bias and layer width. It is stable from layer to layer. Hence, we argue that the NLC is the first robust predictor of overfitting in deep networks.

  Access Model/Code and Paper
Nonparametric Neural Networks

Dec 14, 2017
George Philipp, Jaime G. Carbonell

Automatically determining the optimal size of a neural network for a given task without prior information currently requires an expensive global search and training many networks from scratch. In this paper, we address the problem of automatically finding a good network size during a single training cycle. We introduce *nonparametric neural networks*, a non-probabilistic framework for conducting optimization over all possible network sizes and prove its soundness when network growth is limited via an L_p penalty. We train networks under this framework by continuously adding new units while eliminating redundant units via an L_2 penalty. We employ a novel optimization algorithm, which we term *adaptive radial-angular gradient descent* or *AdaRad*, and obtain promising results.

* ICLR 2017 

  Access Model/Code and Paper
Convolutional Normalizing Flows

Jul 09, 2018
Guoqing Zheng, Yiming Yang, Jaime Carbonell

Bayesian posterior inference is prevalent in various machine learning problems. Variational inference provides one way to approximate the posterior distribution, however its expressive power is limited and so is the accuracy of resulting approximation. Recently, there has a trend of using neural networks to approximate the variational posterior distribution due to the flexibility of neural network architecture. One way to construct flexible variational distribution is to warp a simple density into a complex by normalizing flows, where the resulting density can be analytically evaluated. However, there is a trade-off between the flexibility of normalizing flow and computation cost for efficient transformation. In this paper, we propose a simple yet effective architecture of normalizing flows, ConvFlow, based on convolution over the dimensions of random input vector. Experiments on synthetic and real world posterior inference problems demonstrate the effectiveness and efficiency of the proposed method.

* ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models 

  Access Model/Code and Paper
Asymmetric Variational Autoencoders

Jul 09, 2018
Guoqing Zheng, Yiming Yang, Jaime Carbonell

Variational inference for latent variable models is prevalent in various machine learning problems, typically solved by maximizing the Evidence Lower Bound (ELBO) of the true data likelihood with respect to a variational distribution. However, freely enriching the family of variational distribution is challenging since the ELBO requires variational likelihood evaluations of the latent variables. In this paper, we propose a novel framework to enrich the variational family by incorporating auxiliary variables to the variational family. The resulting inference network doesn't require density evaluations for the auxiliary variables and thus complex implicit densities over the auxiliary variables can be constructed by neural networks. It can be shown that the actual variational posterior of the proposed approach is essentially modeling a rich probabilistic mixture of simple variational posterior indexed by auxiliary variables, thus a flexible inference model can be built. Empirical evaluations on several density estimation tasks demonstrates the effectiveness of the proposed method.

* ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models 

  Access Model/Code and Paper
Co-Clustering for Multitask Learning

Mar 03, 2017
Keerthiram Murugesan, Jaime Carbonell, Yiming Yang

This paper presents a new multitask learning framework that learns a shared representation among the tasks, incorporating both task and feature clusters. The jointly-induced clusters yield a shared latent subspace where task relationships are learned more effectively and more generally than in state-of-the-art multitask learning methods. The proposed general framework enables the derivation of more specific or restricted state-of-the-art multitask methods. The paper also proposes a highly-scalable multitask learning algorithm, based on the new framework, using conjugate gradient descent and generalized \textit{Sylvester equations}. Experimental results on synthetic and benchmark datasets show that the proposed method systematically outperforms several state-of-the-art multitask learning methods.

  Access Model/Code and Paper
Bounds on the Minimax Rate for Estimating a Prior over a VC Class from Independent Learning Tasks

May 20, 2015
Liu Yang, Steve Hanneke, Jaime Carbonell

We study the optimal rates of convergence for estimating a prior distribution over a VC class from a sequence of independent data sets respectively labeled by independent target functions sampled from the prior. We specifically derive upper and lower bounds on the optimal rates under a smoothness condition on the correct prior, with the number of samples per data set equal the VC dimension. These results have implications for the improvements achievable via transfer learning. We additionally extend this setting to real-valued function, where we establish consistency of an estimator for the prior, and discuss an additional application to a preference elicitation problem in algorithmic economics.

  Access Model/Code and Paper
The exploding gradient problem demystified - definition, prevalence, impact, origin, tradeoffs, and solutions

Apr 06, 2018
George Philipp, Dawn Song, Jaime G. Carbonell

Whereas it is believed that techniques such as Adam, batch normalization and, more recently, SeLU nonlinearities "solve" the exploding gradient problem, we show that this is not the case in general and that in a range of popular MLP architectures, exploding gradients exist and that they limit the depth to which networks can be effectively trained, both in theory and in practice. We explain why exploding gradients occur and highlight the *collapsing domain problem*, which can arise in architectures that avoid exploding gradients. ResNets have significantly lower gradients and thus can circumvent the exploding gradient problem, enabling the effective training of much deeper networks. We show this is a direct consequence of the Pythagorean equation. By noticing that *any neural network is a residual network*, we devise the *residual trick*, which reveals that introducing skip connections simplifies the network mathematically, and that this simplicity may be the major cause for their success.

* An earlier version of this paper was named "Gradients explode - Deep Networks are shallow - ResNet explained" and presented at the ICLR 2018 workshop ( 

  Access Model/Code and Paper
Harnessing Code Switching to Transcend the Linguistic Barrier

Jan 30, 2020
Ashiqur R. KhudaBukhsh, Shriphani Palakodety, Jaime G. Carbonell

Code mixing (or code switching) is a common phenomenon observed in social-media content generated by a linguistically diverse user-base. Studies show that in the Indian sub-continent, a substantial fraction of social media posts exhibit code switching. While the difficulties posed by code mixed documents to further downstream analyses are well-understood, lending visibility to code mixed documents under certain scenarios may have utility that has been previously overlooked. For instance, a document written in a mixture of multiple languages can be partially accessible to a wider audience; this could be particularly useful if a considerable fraction of the audience lacks fluency in one of the component languages. In this paper, we provide a systematic approach to sample code mixed documents leveraging a polyglot embedding based method that requires minimal supervision. In the context of the 2019 India-Pakistan conflict triggered by the Pulwama terror attack, we demonstrate an untapped potential of harnessing code mixing for human well-being: starting from an existing hostility diffusing \emph{hope speech} classifier solely trained on English documents, code mixed documents are utilized as a bridge to retrieve \emph{hope speech} content written in a low-resource but widely used language - Romanized Hindi. Our proposed pipeline requires minimal supervision and holds promise in substantially reducing web moderation efforts.

  Access Model/Code and Paper
Voice for the Voiceless: Active Sampling to Detect Comments Supporting the Rohingyas

Oct 08, 2019
Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Jaime G. Carbonell

The Rohingya refugee crisis is one of the biggest humanitarian crises of modern times with more than 600,000 Rohingyas rendered homeless according to the United Nations High Commissioner for Refugees. While it has received sustained press attention globally, no comprehensive research has been performed on social media pertaining to this large evolving crisis. In this work, we construct a substantial corpus of YouTube video comments (263,482 comments from 113,250 users in 5,153 relevant videos) with an aim to analyze the possible role of AI in helping a marginalized community. Using a novel combination of multiple Active Learning strategies and a novel active sampling strategy based on nearest-neighbors in the comment-embedding space, we construct a classifier that can detect comments defending the Rohingyas among larger numbers of disparaging and neutral ones. We advocate that beyond the burgeoning field of hate-speech detection, automatic detection of \emph{help-speech} can lend voice to the voiceless people and make the internet safer for marginalized communities.

  Access Model/Code and Paper
Kashmir: A Computational Analysis of the Voice of Peace

Sep 11, 2019
Shriphani Palakodety, Ashiqur R. KhudaBukhsh, Jaime G. Carbonell

The recent Pulwama terror attack (February 14, 2019, Pulwama, Kashmir) triggered a chain of escalating events between India and Pakistan adding another episode to their 70-year-old dispute over Kashmir. The present era of ubiquitious social media has never seen nuclear powers closer to war. In this paper, we analyze this evolving international crisis via a substantial corpus constructed using comments on YouTube videos (921,235 English comments posted by 392,460 users out of 2.04 million overall comments by 791,289 users on 2,890 videos). Our main contributions in the paper are three-fold. First, we present an observation that polyglot word-embeddings reveal precise and accurate language clusters, and subsequently construct a document language-identification technique with negligible annotation requirements. We demonstrate the viability and utility across a variety of data sets involving several low-resource languages. Second, we present an extensive analysis on temporal trends of pro-peace and pro-war intent through a manually constructed polarity phrase lexicon. We observe that when tensions between the two nations were at their peak, pro-peace intent in the corpus was at its highest point. Finally, in the context of heated discussions in a politically tense situation where two nations are at the brink of a full-fledged war, we argue the importance of automatic identification of user-generated web content that can diffuse hostility and address this prediction task, dubbed \emph{hope-speech detection}.

  Access Model/Code and Paper
Domain Adaptation of Neural Machine Translation by Lexicon Induction

Jun 02, 2019
Junjie Hu, Mengzhou Xia, Graham Neubig, Jaime Carbonell

It has been previously noted that neural machine translation (NMT) is very sensitive to domain shift. In this paper, we argue that this is a dual effect of the highly lexicalized nature of NMT, resulting in failure for sentences with large numbers of unknown words, and lack of supervision for domain-specific words. To remedy this problem, we propose an unsupervised adaptation method which fine-tunes a pre-trained out-of-domain NMT model using a pseudo-in-domain corpus. Specifically, we perform lexicon induction to extract an in-domain lexicon, and construct a pseudo-parallel in-domain corpus by performing word-for-word back-translation of monolingual in-domain target sentences. In five domains over twenty pairwise adaptation settings and two model architectures, our method achieves consistent improvements without using any in-domain parallel sentences, improving up to 14 BLEU over unadapted models, and up to 2 BLEU over strong back-translation baselines.

* published at the 57th Annual Meeting of the Association for Computational Linguistics (ACL). July 2019 

  Access Model/Code and Paper
Characterizing and Avoiding Negative Transfer

Nov 24, 2018
Zirui Wang, Zihang Dai, Barnabás Póczos, Jaime Carbonell

When labeled data is scarce for a specific target task, transfer learning often offers an effective solution by utilizing data from a related source task. However, when transferring knowledge from a less related source, it may inversely hurt the target performance, a phenomenon known as negative transfer. Despite its pervasiveness, negative transfer is usually described in an informal manner, lacking rigorous definition, careful analysis, or systematic treatment. This paper proposes a formal definition of negative transfer and analyzes three important aspects thereof. Stemming from this analysis, a novel technique is proposed to circumvent negative transfer by filtering out unrelated source data. Based on adversarial networks, the technique is highly generic and can be applied to a wide range of transfer learning algorithms. The proposed approach is evaluated on six state-of-the-art deep transfer methods via experiments on four benchmark datasets with varying levels of difficulty. Empirically, the proposed method consistently improves the performance of all baseline methods and largely avoids negative transfer, even when the source data is degenerate.

  Access Model/Code and Paper
Zero-shot Neural Transfer for Cross-lingual Entity Linking

Nov 09, 2018
Shruti Rijhwani, Jiateng Xie, Graham Neubig, Jaime Carbonell

Cross-lingual entity linking maps an entity mention in a source language to its corresponding entry in a structured knowledge base that is in a different (target) language. While previous work relies heavily on bilingual lexical resources to bridge the gap between the source and the target languages, these resources are scarce or unavailable for many low-resource languages. To address this problem, we investigate zero-shot cross-lingual entity linking, in which we assume no bilingual lexical resources are available in the source low-resource language. Specifically, we propose pivot-based entity linking, which leverages information from a high-resource "pivot" language to train character-level neural entity linking models that are transferred to the source low-resource language in a zero-shot manner. With experiments on 9 low-resource languages and transfer through a total of 54 languages, we show that our proposed pivot-based framework improves entity linking accuracy 17% (absolute) on average over the baseline systems, for the zero-shot scenario. Further, we also investigate the use of language-universal phonological representations which improves average accuracy (absolute) by 36% when transferring between languages that use different scripts.

* To appear in AAAI 2019 

  Access Model/Code and Paper
Towards Semi-Supervised Learning for Deep Semantic Role Labeling

Aug 28, 2018
Sanket Vaibhav Mehta, Jay Yoon Lee, Jaime Carbonell

Neural models have shown several state-of-the-art performances on Semantic Role Labeling (SRL). However, the neural models require an immense amount of semantic-role corpora and are thus not well suited for low-resource languages or domains. The paper proposes a semi-supervised semantic role labeling method that outperforms the state-of-the-art in limited SRL training corpora. The method is based on explicitly enforcing syntactic constraints by augmenting the training objective with a syntactic-inconsistency loss component and uses SRL-unlabeled instances to train a joint-objective LSTM. On CoNLL-2012 English section, the proposed semi-supervised training with 1%, 10% SRL-labeled data and varying amounts of SRL-unlabeled data achieves +1.58, +0.78 F1, respectively, over the pre-trained models that were trained on SOTA architecture with ELMo on the same SRL-labeled data. Additionally, by using the syntactic-inconsistency loss on inference time, the proposed model achieves +3.67, +2.1 F1 over pre-trained model on 1%, 10% SRL-labeled data, respectively.

* EMNLP 2018 

  Access Model/Code and Paper
Improving Candidate Generation for Low-resource Cross-lingual Entity Linking

Mar 03, 2020
Shuyan Zhou, Shruti Rijhawani, John Wieting, Jaime Carbonell, Graham Neubig

Cross-lingual entity linking (XEL) is the task of finding referents in a target-language knowledge base (KB) for mentions extracted from source-language texts. The first step of (X)EL is candidate generation, which retrieves a list of plausible candidate entities from the target-language KB for each mention. Approaches based on resources from Wikipedia have proven successful in the realm of relatively high-resource languages (HRL), but these do not extend well to low-resource languages (LRL) with few, if any, Wikipedia pages. Recently, transfer learning methods have been shown to reduce the demand for resources in the LRL by utilizing resources in closely-related languages, but the performance still lags far behind their high-resource counterparts. In this paper, we first assess the problems faced by current entity candidate generation methods for low-resource XEL, then propose three improvements that (1) reduce the disconnect between entity mentions and KB entries, and (2) improve the robustness of the model to low-resource scenarios. The methods are simple, but effective: we experiment with our approach on seven XEL datasets and find that they yield an average gain of 16.9% in Top-30 gold candidate recall, compared to state-of-the-art baselines. Our improved model also yields an average gain of 7.9% in in-KB accuracy of end-to-end XEL.

* Accepted to TACL 2020 

  Access Model/Code and Paper
Learning Rhyming Constraints using Structured Adversaries

Sep 15, 2019
Harsh Jhamtani, Sanket Vaibhav Mehta, Jaime Carbonell, Taylor Berg-Kirkpatrick

Existing recurrent neural language models often fail to capture higher-level structure present in text: for example, rhyming patterns present in poetry. Much prior work on poetry generation uses manually defined constraints which are satisfied during decoding using either specialized decoding procedures or rejection sampling. The rhyming constraints themselves are typically not learned by the generator. We propose an alternate approach that uses a structured discriminator to learn a poetry generator that directly captures rhyming constraints in a generative adversarial setup. By causing the discriminator to compare poems based only on a learned similarity matrix of pairs of line ending words, the proposed approach is able to successfully learn rhyming patterns in two different English poetry datasets (Sonnet and Limerick) without explicitly being provided with any phonetic information.

* EMNLP-IJCNLP 2019 Short Paper 

  Access Model/Code and Paper
Neural Cross-Lingual Named Entity Recognition with Minimal Resources

Sep 11, 2018
Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A. Smith, Jaime Carbonell

For languages with no annotated resources, unsupervised transfer of natural language processing models such as named-entity recognition (NER) from resource-rich languages would be an appealing capability. However, differences in words and word order across languages make it a challenging problem. To improve mapping of lexical items across languages, we propose a method that finds translations based on bilingual word embeddings. To improve robustness to word order differences, we propose to use self-attention, which allows for a degree of flexibility with respect to word order. We demonstrate that these methods achieve state-of-the-art or competitive NER performance on commonly tested languages under a cross-lingual setting, with much lower resource requirements than past approaches. We also evaluate the challenges of applying these methods to Uyghur, a low-resource language.

* EMNLP 2018 long paper 

  Access Model/Code and Paper