Models, code, and papers for "Jan Kautz":

On Nearest Neighbors in Non Local Means Denoising

Nov 20, 2017
Iuri Frosio, Jan Kautz

To denoise a reference patch, the Non-Local-Means denoising filter processes a set of neighbor patches. Few Nearest Neighbors (NN) are used to limit the computational burden of the algorithm. Here here we show analytically that the NN approach introduces a bias in the denoised patch, and we propose a different neighbors' collection criterion, named Statistical NN (SNN), to alleviate this issue. Our approach outperforms the traditional one in case of both white and colored noise: fewer SNNs generate images of higher quality, at a lower computational cost.

* This paper is accepted at the 2017 NIPS workshop "Nearest Neighbors for Modern Applications with Massive Data" 

  Access Model/Code and Paper
Gaze-Sensing LEDs for Head Mounted Displays

Mar 18, 2020
Kaan Akşit, Jan Kautz, David Luebke

We introduce a new gaze tracker for Head Mounted Displays (HMDs). We modify two off-the-shelf HMDs to be gaze-aware using Light Emitting Diodes (LEDs). Our key contribution is to exploit the sensing capability of LEDs to create low-power gaze tracker for virtual reality (VR) applications. This yields a simple approach using minimal hardware to achieve good accuracy and low latency using light-weight supervised Gaussian Process Regression (GPR) running on a mobile device. With our hardware, we show that Minkowski distance measure based GPR implementation outperforms the commonly used radial basis function-based support vector regression (SVR) without the need to precisely determine free parameters. We show that our gaze estimation method does not require complex dimension reduction techniques, feature extraction, or distortion corrections due to off-axis optical paths. We demonstrate two complete HMD prototypes with a sample eye-tracked application, and report on a series of subjective tests using our prototypes.

* 14 pages, 7 figures. THIS WORK WAS CONDUCTED IN 2015 

  Access Model/Code and Paper
Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the Wild

Mar 17, 2020
Umar Iqbal, Pavlo Molchanov, Jan Kautz

One major challenge for monocular 3D human pose estimation in-the-wild is the acquisition of training data that contains unconstrained images annotated with accurate 3D poses. In this paper, we address this challenge by proposing a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data, which can be acquired easily in in-the-wild environments. We propose a novel end-to-end learning framework that enables weakly-supervised training using multi-view consistency. Since multi-view consistency is prone to degenerated solutions, we adopt a 2.5D pose representation and propose a novel objective function that can only be minimized when the predictions of the trained model are consistent and plausible across all camera views. We evaluate our proposed approach on two large scale datasets (Human3.6M and MPII-INF-3DHP) where it achieves state-of-the-art performance among semi-/weakly-supervised methods.

* CVPR 2020 

  Access Model/Code and Paper
EOE: Expected Overlap Estimation over Unstructured Point Cloud Data

Aug 06, 2018
Ben Eckart, Kihwan Kim, Jan Kautz

We present an iterative overlap estimation technique to augment existing point cloud registration algorithms that can achieve high performance in difficult real-world situations where large pose displacement and non-overlapping geometry would otherwise cause traditional methods to fail. Our approach estimates overlapping regions through an iterative Expectation Maximization procedure that encodes the sensor field-of-view into the registration process. The proposed technique, Expected Overlap Estimation (EOE), is derived from the observation that differences in field-of-view violate the iid assumption implicitly held by all maximum likelihood based registration techniques. We demonstrate how our approach can augment many popular registration methods with minimal computational overhead. Through experimentation on both synthetic and real-world datasets, we find that adding an explicit overlap estimation step can aid robust outlier handling and increase the accuracy of both ICP-based and GMM-based registration methods, especially in large unstructured domains and where the amount of overlap between point clouds is very small.

* The paper will be presented in 3DV 2018 

  Access Model/Code and Paper
Fast and Accurate Point Cloud Registration using Trees of Gaussian Mixtures

Jul 06, 2018
Ben Eckart, Kihwan Kim, Jan Kautz

Point cloud registration sits at the core of many important and challenging 3D perception problems including autonomous navigation, SLAM, object/scene recognition, and augmented reality. In this paper, we present a new registration algorithm that is able to achieve state-of-the-art speed and accuracy through its use of a hierarchical Gaussian Mixture Model (GMM) representation. Our method constructs a top-down multi-scale representation of point cloud data by recursively running many small-scale data likelihood segmentations in parallel on a GPU. We leverage the resulting representation using a novel PCA-based optimization criterion that adaptively finds the best scale to perform data association between spatial subsets of point cloud data. Compared to previous Iterative Closest Point and GMM-based techniques, our tree-based point association algorithm performs data association in logarithmic-time while dynamically adjusting the level of detail to best match the complexity and spatial distribution characteristics of local scene geometry. In addition, unlike other GMM methods that restrict covariances to be isotropic, our new PCA-based optimization criterion well-approximates the true MLE solution even when fully anisotropic Gaussian covariances are used. Efficient data association, multi-scale adaptability, and a robust MLE approximation produce an algorithm that is up to an order of magnitude both faster and more accurate than current state-of-the-art on a wide variety of 3D datasets captured from LiDAR to structured light.

* ECCV 2018 

  Access Model/Code and Paper
Learning Adaptive Parameter Tuning for Image Processing

Dec 27, 2017
Jingming Dong, Iuri Frosio, Jan Kautz

The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between these features and the optimal filtering parameters. Learning is performed by optimizing a user defined cost function (any image quality metric) on a training set. We apply our method to three classical problems (denoising, demosaicing and deblurring) and we show the effectiveness of the learned parameter modulation strategies. We also show that these strategies are consistent with theoretical results from the literature.

* Jinming Dong, Iuri Frosio, Jan Kautz, Learning Adaptive Parameter Tuning for Image Processing, Proc. EI 2018, Image Processing: Algorithms and Systems XVI, Burlingame, USA, 28 Jan - 2 Feb 2018 

  Access Model/Code and Paper
Unsupervised Image-to-Image Translation Networks

Jul 23, 2018
Ming-Yu Liu, Thomas Breuel, Jan Kautz

Unsupervised image-to-image translation aims at learning a joint distribution of images in different domains by using images from the marginal distributions in individual domains. Since there exists an infinite set of joint distributions that can arrive the given marginal distributions, one could infer nothing about the joint distribution from the marginal distributions without additional assumptions. To address the problem, we make a shared-latent space assumption and propose an unsupervised image-to-image translation framework based on Coupled GANs. We compare the proposed framework with competing approaches and present high quality image translation results on various challenging unsupervised image translation tasks, including street scene image translation, animal image translation, and face image translation. We also apply the proposed framework to domain adaptation and achieve state-of-the-art performance on benchmark datasets. Code and additional results are available in .

* NIPS 2017, 11 pages, 6 figures 

  Access Model/Code and Paper
Light-weight Head Pose Invariant Gaze Tracking

Apr 23, 2018
Rajeev Ranjan, Shalini De Mello, Jan Kautz

Unconstrained remote gaze tracking using off-the-shelf cameras is a challenging problem. Recently, promising algorithms for appearance-based gaze estimation using convolutional neural networks (CNN) have been proposed. Improving their robustness to various confounding factors including variable head pose, subject identity, illumination and image quality remain open problems. In this work, we study the effect of variable head pose on machine learning regressors trained to estimate gaze direction. We propose a novel branched CNN architecture that improves the robustness of gaze classifiers to variable head pose, without increasing computational cost. We also present various procedures to effectively train our gaze network including transfer learning from the more closely related task of object viewpoint estimation and from a large high-fidelity synthetic gaze dataset, which enable our ten times faster gaze network to achieve competitive accuracy to its current state-of-the-art direct competitor.

* 9 pages, IEEE Conference on Computer Vision and Pattern Recognition Workshop 

  Access Model/Code and Paper
Discovering Nonlinear Relations with Minimum Predictive Information Regularization

Jan 07, 2020
Tailin Wu, Thomas Breuel, Michael Skuhersky, Jan Kautz

Identifying the underlying directional relations from observational time series with nonlinear interactions and complex relational structures is key to a wide range of applications, yet remains a hard problem. In this work, we introduce a novel minimum predictive information regularization method to infer directional relations from time series, allowing deep learning models to discover nonlinear relations. Our method substantially outperforms other methods for learning nonlinear relations in synthetic datasets, and discovers the directional relations in a video game environment and a heart-rate vs. breath-rate dataset.

* 26 pages, 11 figures; ICML'19 Time Series Workshop 

  Access Model/Code and Paper
Meshlet Priors for 3D Mesh Reconstruction

Jan 06, 2020
Abhishek Badki, Orazio Gallo, Jan Kautz, Pradeep Sen

Estimating a mesh from an unordered set of sparse, noisy 3D points is a challenging problem that requires carefully selected priors. Existing hand-crafted priors, such as smoothness regularizers, impose an undesirable trade-off between attenuating noise and preserving local detail. Recent deep-learning approaches produce impressive results by learning priors directly from the data. However, the priors are learned at the object level, which makes these algorithms class-specific, and even sensitive to the pose of the object. We introduce meshlets, small patches of mesh that we use to learn local shape priors. Meshlets act as a dictionary of local features and thus allow to use learned priors to reconstruct object meshes in any pose and from unseen classes, even when the noise is large and the samples sparse.

  Access Model/Code and Paper
Separating Reflection and Transmission Images in the Wild

Aug 16, 2018
Patrick Wieschollek, Orazio Gallo, Jinwei Gu, Jan Kautz

The reflections caused by common semi-reflectors, such as glass windows, can impact the performance of computer vision algorithms. State-of-the-art methods can remove reflections on synthetic data and in controlled scenarios. However, they are based on strong assumptions and do not generalize well to real-world images. Contrary to a common misconception, real-world images are challenging even when polarization information is used. We present a deep learning approach to separate the reflected and the transmitted components of the recorded irradiance, which explicitly uses the polarization properties of light. To train it, we introduce an accurate synthetic data generation pipeline, which simulates realistic reflections, including those generated by curved and non-ideal surfaces, non-static scenes, and high-dynamic-range scenes.

* accepted at ECCV 2018 

  Access Model/Code and Paper
Budget-Aware Activity Detection with A Recurrent Policy Network

May 08, 2018
Behrooz Mahasseni, Xiaodong Yang, Pavlo Molchanov, Jan Kautz

In this paper, we address the challenging problem of efficient temporal activity detection in untrimmed long videos. While most recent work has focused and advanced the detection accuracy, the inference time can take seconds to minutes in processing each single video, which is too slow to be useful in real-world settings. This motivates the proposed budget-aware framework, which learns to perform activity detection by intelligently selecting a small subset of frames according to a specified time budget. We formulate this problem as a Markov decision process, and adopt a recurrent network to model the frame selection policy. We derive a recurrent policy gradient based approach to approximate the gradient of the non-decomposable and non-differentiable objective defined in our problem. In the extensive experiments, we achieve competitive detection accuracy, and more importantly, our approach is able to substantially reduce computation time and detect multiple activities with only 0.35s for each untrimmed long video.

  Access Model/Code and Paper
Loss Functions for Neural Networks for Image Processing

Apr 20, 2018
Hang Zhao, Orazio Gallo, Iuri Frosio, Jan Kautz

Neural networks are becoming central in several areas of computer vision and image processing and different architectures have been proposed to solve specific problems. The impact of the loss layer of neural networks, however, has not received much attention in the context of image processing: the default and virtually only choice is L2. In this paper, we bring attention to alternative choices for image restoration. In particular, we show the importance of perceptually-motivated losses when the resulting image is to be evaluated by a human observer. We compare the performance of several losses, and propose a novel, differentiable error function. We show that the quality of the results improves significantly with better loss functions, even when the network architecture is left unchanged.

* This paper was published in IEEE Transactions on Computational Imaging on December 23, 2016 

  Access Model/Code and Paper
Sim-to-Real Transfer of Accurate Grasping with Eye-In-Hand Observations and Continuous Control

Dec 19, 2017
Mengyuan Yan, Iuri Frosio, Stephen Tyree, Jan Kautz

In the context of deep learning for robotics, we show effective method of training a real robot to grasp a tiny sphere (1.37cm of diameter), with an original combination of system design choices. We decompose the end-to-end system into a vision module and a closed-loop controller module. The two modules use target object segmentation as their common interface. The vision module extracts information from the robot end-effector camera, in the form of a binary segmentation mask of the target. We train it to achieve effective domain transfer by composing real background images with simulated images of the target. The controller module takes as input the binary segmentation mask, and thus is agnostic to visual discrepancies between simulated and real environments. We train our closed-loop controller in simulation using imitation learning and show it is robust with respect to discrepancies between the dynamic model of the simulated and real robot: when combined with eye-in-hand observations, we achieve a 90% success rate in grasping a tiny sphere with a real robot. The controller can generalize to unseen scenarios where the target is moving and even learns to recover from failures.

* Neural Information Processing Systems (NIPS) 2017 Workshop on Acting and Interacting in the Real World: Challenges in Robot Learning 

  Access Model/Code and Paper
Deep Learning with Energy-efficient Binary Gradient Cameras

Dec 03, 2016
Suren Jayasuriya, Orazio Gallo, Jinwei Gu, Jan Kautz

Power consumption is a critical factor for the deployment of embedded computer vision systems. We explore the use of computational cameras that directly output binary gradient images to reduce the portion of the power consumption allocated to image sensing. We survey the accuracy of binary gradient cameras on a number of computer vision tasks using deep learning. These include object recognition, head pose regression, face detection, and gesture recognition. We show that, for certain applications, accuracy can be on par or even better than what can be achieved on traditional images. We are also the first to recover intensity information from binary spatial gradient images--useful for applications with a human observer in the loop, such as surveillance. Our results, which we validate with a prototype binary gradient camera, point to the potential of gradient-based computer vision systems.

  Access Model/Code and Paper
UNAS: Differentiable Architecture Search Meets Reinforcement Learning

Dec 16, 2019
Arash Vahdat, Arun Mallya, Ming-Yu Liu, Jan Kautz

Neural architecture search (NAS) aims to discover network architectures with desired properties such as high accuracy or low latency. Recently, differentiable NAS (DNAS) has demonstrated promising results while maintaining a search cost orders of magnitude lower than reinforcement learning (RL) based NAS. However, DNAS models can only optimize differentiable loss functions in search, and they require an accurate differentiable approximation of non-differentiable criteria. In this work, we present UNAS, a unified framework for NAS, that encapsulates recent DNAS and RL-based approaches under one framework. Our framework brings the best of both worlds, and it enables us to search for architectures with both differentiable and non-differentiable criteria in one unified framework while maintaining a low search cost. Further, we introduce a new objective function for search based on the generalization gap that prevents the selection of architectures prone to overfitting. We present extensive experiments on the CIFAR-10, CIFAR-100 and ImageNet datasets and we perform search in two fundamentally different search spaces. We show that UNAS obtains the state-of-the-art average accuracy on all three datasets when compared to the architectures searched in the DARTS space. Moreover, we show that UNAS can find an efficient and accurate architecture in the ProxylessNAS search space, that outperforms existing MobileNetV2 based architectures.

  Access Model/Code and Paper
Models Matter, So Does Training: An Empirical Study of CNNs for Optical Flow Estimation

Sep 14, 2018
Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz

We investigate two crucial and closely related aspects of CNNs for optical flow estimation: models and training. First, we design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal processing, warping, and cost volume processing. PWC-Net is 17 times smaller in size, 2 times faster in inference, and 11\% more accurate on Sintel final than the recent FlowNet2 model. It is the winning entry in the optical flow competition of the robust vision challenge. Next, we experimentally analyze the sources of our performance gains. In particular, we use the same training procedure of PWC-Net to retrain FlowNetC, a sub-network of FlowNet2. The retrained FlowNetC is 56\% more accurate on Sintel final than the previously trained one and even 5\% more accurate than the FlowNet2 model. We further improve the training procedure and increase the accuracy of PWC-Net on Sintel by 10\% and on KITTI 2012 and 2015 by 20\%. Our newly trained model parameters and training protocols will be available on

  Access Model/Code and Paper
Multimodal Unsupervised Image-to-Image Translation

Aug 14, 2018
Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz

Unsupervised image-to-image translation is an important and challenging problem in computer vision. Given an image in the source domain, the goal is to learn the conditional distribution of corresponding images in the target domain, without seeing any pairs of corresponding images. While this conditional distribution is inherently multimodal, existing approaches make an overly simplified assumption, modeling it as a deterministic one-to-one mapping. As a result, they fail to generate diverse outputs from a given source domain image. To address this limitation, we propose a Multimodal Unsupervised Image-to-image Translation (MUNIT) framework. We assume that the image representation can be decomposed into a content code that is domain-invariant, and a style code that captures domain-specific properties. To translate an image to another domain, we recombine its content code with a random style code sampled from the style space of the target domain. We analyze the proposed framework and establish several theoretical results. Extensive experiments with comparisons to the state-of-the-art approaches further demonstrates the advantage of the proposed framework. Moreover, our framework allows users to control the style of translation outputs by providing an example style image. Code and pretrained models are available at

* Accepted by ECCV 2018 

  Access Model/Code and Paper
Learning Linear Transformations for Fast Arbitrary Style Transfer

Aug 14, 2018
Xueting Li, Sifei Liu, Jan Kautz, Ming-Hsuan Yang

Given a random pair of images, an arbitrary style transfer method extracts the feel from the reference image to synthesize an output based on the look of the other content image. Recent arbitrary style transfer methods transfer second order statistics from reference image onto content image via a multiplication between content image features and a transformation matrix, which is computed from features with a pre-determined algorithm. These algorithms either require computationally expensive operations, or fail to model the feature covariance and produce artifacts in synthesized images. Generalized from these methods, in this work, we derive the form of transformation matrix theoretically and present an arbitrary style transfer approach that learns the transformation matrix with a feed-forward network. Our algorithm is highly efficient yet allows a flexible combination of multi-level styles while preserving content affinity during style transfer process. We demonstrate the effectiveness of our approach on four tasks: artistic style transfer, video and photo-realistic style transfer as well as domain adaptation, including comparisons with the state-of-the-art methods.

  Access Model/Code and Paper
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

Jun 25, 2018
Deqing Sun, Xiaodong Yang, Ming-Yu Liu, Jan Kautz

We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on

* CVPR 2018 camera ready version (with github link to Caffe and PyTorch code) 

  Access Model/Code and Paper