Models, code, and papers for "Jason Knight":

ISA Mapper: A Compute and Hardware Agnostic Deep Learning Compiler

Oct 12, 2018
Matthew Sotoudeh, Anand Venkat, Michael Anderson, Evangelos Georganas, Alexander Heinecke, Jason Knight

Domain specific accelerators present new challenges and opportunities for code generation onto novel instruction sets, communication fabrics, and memory architectures. In this paper we introduce an intermediate representation (IR) which enables both deep learning computational kernels and hardware capabilities to be described in the same IR. We then formulate and apply instruction mapping to determine the possible ways a computation can be performed on a hardware system. Next, our scheduler chooses a specific mapping and determines the data movement and computation order. In order to manage the large search space of mappings and schedules, we developed a flexible framework that allows heuristics, cost models, and potentially machine learning to facilitate this search problem. With this system, we demonstrate the automated extraction of matrix multiplication kernels out of recent deep learning kernels such as depthwise-separable convolution. In addition, we demonstrate two to five times better performance on DeepBench sized GEMMs and GRU RNN execution when compared to state-of-the-art (SOTA) implementations on new hardware and up to 85% of the performance for SOTA implementations on existing hardware.


  Access Model/Code and Paper
Long-distance Detection of Bioacoustic Events with Per-channel Energy Normalization

Nov 01, 2019
Vincent Lostanlen, Kaitlin Palmer, Elly Knight, Christopher Clark, Holger Klinck, Andrew Farnsworth, Tina Wong, Jason Cramer, Juan Pablo Bello

This paper proposes to perform unsupervised detection of bioacoustic events by pooling the magnitudes of spectrogram frames after per-channel energy normalization (PCEN). Although PCEN was originally developed for speech recognition, it also has beneficial effects in enhancing animal vocalizations, despite the presence of atmospheric absorption and intermittent noise. We prove that PCEN generalizes logarithm-based spectral flux, yet with a tunable time scale for background noise estimation. In comparison with pointwise logarithm, PCEN reduces false alarm rate by 50x in the near field and 5x in the far field, both on avian and marine bioacoustic datasets. Such improvements come at moderate computational cost and require no human intervention, thus heralding a promising future for PCEN in bioacoustics.

* 5 pages, 3 figures. Presented at the 3rd International Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE). 25--26 October 2019, New York, NY, USA 

  Access Model/Code and Paper
Intel nGraph: An Intermediate Representation, Compiler, and Executor for Deep Learning

Jan 30, 2018
Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart, Avijit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko, Varun Kumar, Yixing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath Narayana, Adam Procter, Tristan J. Webb

The Deep Learning (DL) community sees many novel topologies published each year. Achieving high performance on each new topology remains challenging, as each requires some level of manual effort. This issue is compounded by the proliferation of frameworks and hardware platforms. The current approach, which we call "direct optimization", requires deep changes within each framework to improve the training performance for each hardware backend (CPUs, GPUs, FPGAs, ASICs) and requires $\mathcal{O}(fp)$ effort; where $f$ is the number of frameworks and $p$ is the number of platforms. While optimized kernels for deep-learning primitives are provided via libraries like Intel Math Kernel Library for Deep Neural Networks (MKL-DNN), there are several compiler-inspired ways in which performance can be further optimized. Building on our experience creating neon (a fast deep learning library on GPUs), we developed Intel nGraph, a soon to be open-sourced C++ library to simplify the realization of optimized deep learning performance across frameworks and hardware platforms. Initially-supported frameworks include TensorFlow, MXNet, and Intel neon framework. Initial backends are Intel Architecture CPUs (CPU), the Intel(R) Nervana Neural Network Processor(R) (NNP), and NVIDIA GPUs. Currently supported compiler optimizations include efficient memory management and data layout abstraction. In this paper, we describe our overall architecture and its core components. In the future, we envision extending nGraph API support to a wider range of frameworks, hardware (including FPGAs and ASICs), and compiler optimizations (training versus inference optimizations, multi-node and multi-device scaling via efficient sub-graph partitioning, and HW-specific compounding of operations).


  Access Model/Code and Paper
SysML: The New Frontier of Machine Learning Systems

Mar 29, 2019
Alexander Ratner, Dan Alistarh, Gustavo Alonso, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar

Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, SysML, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two.


  Access Model/Code and Paper
I love your chain mail! Making knights smile in a fantasy game world: Open-domain goal-oriented dialogue agents

Feb 10, 2020
Shrimai Prabhumoye, Margaret Li, Jack Urbanek, Emily Dinan, Douwe Kiela, Jason Weston, Arthur Szlam

Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a straightforward learning signal. Humans effortlessly combine the two, for example engaging in chit-chat with the goal of exchanging information or eliciting a specific response. Here, we bridge the divide between these two domains in the setting of a rich multi-player text-based fantasy environment where agents and humans engage in both actions and dialogue. Specifically, we train a goal-oriented model with reinforcement learning against an imitation-learned ``chit-chat'' model with two approaches: the policy either learns to pick a topic or learns to pick an utterance given the top-K utterances from the chit-chat model. We show that both models outperform an inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.


  Access Model/Code and Paper
I love your chain mail! Making knights smile in a fantasy game world: Open-domain goal-orientated dialogue agents

Feb 07, 2020
Shrimai Prabhumoye, Margaret Li, Jack Urbanek, Emily Dinan, Douwe Kiela, Jason Weston, Arthur Szlam

Dialogue research tends to distinguish between chit-chat and goal-oriented tasks. While the former is arguably more naturalistic and has a wider use of language, the latter has clearer metrics and a straightforward learning signal. Humans effortlessly combine the two, for example engaging in chit-chat with the goal of exchanging information or eliciting a specific response. Here, we bridge the divide between these two domains in the setting of a rich multi-player text-based fantasy environment where agents and humans engage in both actions and dialogue. Specifically, we train a goal-oriented model with reinforcement learning against an imitation-learned ``chit-chat'' model with two approaches: the policy either learns to pick a topic or learns to pick an utterance given the top-K utterances from the chit-chat model. We show that both models outperform an inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.


  Access Model/Code and Paper