Models, code, and papers for "Jing Wu":

Rigid Point Registration with Expectation Conditional Maximization

Mar 07, 2018
Jing Wu

This paper addresses the issue of matching rigid 3D object points with 2D image points through point registration based on maximum likelihood principle in computer simulated images. Perspective projection is necessary when transforming 3D coordinate into 2D. The problem then recasts into a missing data framework where unknown correspondences are handled via mixture models. Adopting the Expectation Conditional Maximization for Point Registration (ECMPR), two different rotation and translation optimization algorithms are compared in this paper. We analyze in detail the associated consequences in terms of estimation of the registration parameters theoretically and experimentally.

  Access Model/Code and Paper
Stochastic Linear Contextual Bandits with Diverse Contexts

Mar 05, 2020
Weiqiang Wu, Jing Yang, Cong Shen

In this paper, we investigate the impact of context diversity on stochastic linear contextual bandits. As opposed to the previous view that contexts lead to more difficult bandit learning, we show that when the contexts are sufficiently diverse, the learner is able to utilize the information obtained during exploitation to shorten the exploration process, thus achieving reduced regret. We design the LinUCB-d algorithm, and propose a novel approach to analyze its regret performance. The main theoretical result is that under the diverse context assumption, the cumulative expected regret of LinUCB-d is bounded by a constant. As a by-product, our results improve the previous understanding of LinUCB and strengthen its performance guarantee.

* Accepted to AISTATS 2020 

  Access Model/Code and Paper
MIDI-Sandwich2: RNN-based Hierarchical Multi-modal Fusion Generation VAE networks for multi-track symbolic music generation

Sep 08, 2019
Xia Liang, Junmin Wu, Jing Cao

Currently, almost all the multi-track music generation models use the Convolutional Neural Network (CNN) to build the generative model, while the Recurrent Neural Network (RNN) based models can not be applied in this task. In view of the above problem, this paper proposes a RNN-based Hierarchical Multi-modal Fusion Generation Variational Autoencoder (VAE) network, MIDI-Sandwich2, for multi-track symbolic music generation. Inspired by VQ-VAE2, MIDI-Sandwich2 expands the dimension of the original hierarchical model by using multiple independent Binary Variational Autoencoder (BVAE) models without sharing weights to process the information of each track. Then, with multi-modal fusion technology, the upper layer named Multi-modal Fusion Generation VAE (MFG-VAE) combines the latent space vectors generated by the respective tracks, and uses the decoder to perform the ascending dimension reconstruction to simulate the inverse operation of multi-modal fusion, multi-modal generation, so as to realize the RNN-based multi-track symbolic music generation. For the multi-track format pianoroll, we also improve the output binarization method of MuseGAN, which solves the problem that the refinement step of the original scheme is difficult to differentiate and the gradient is hard to descent, making the generated song more expressive. The model is validated on the Lakh Pianoroll Dataset (LPD) multi-track dataset. Compared to the MuseGAN, MIDI-Sandwich2 can not only generate harmonious multi-track music, the generation quality is also close to the state of the art level. At the same time, by using the VAE to restore songs, the semi-generated songs reproduced by the MIDI-Sandwich2 are more beautiful than the pure autogeneration music generated by MuseGAN. Both the code and the audition audio samples are open source on

  Access Model/Code and Paper
Learn to Generate Time Series Conditioned Graphs with Generative Adversarial Nets

Mar 03, 2020
Shanchao Yang, Jing Liu, Kai Wu, Mingming Li

Deep learning based approaches have been utilized to model and generate graphs subjected to different distributions recently. However, they are typically unsupervised learning based and unconditioned generative models or simply conditioned on the graph-level contexts, which are not associated with rich semantic node-level contexts. Differently, in this paper, we are interested in a novel problem named Time Series Conditioned Graph Generation: given an input multivariate time series, we aim to infer a target relation graph modeling the underlying interrelationships between time series with each node corresponding to each time series. For example, we can study the interrelationships between genes in a gene regulatory network of a certain disease conditioned on their gene expression data recorded as time series. To achieve this, we propose a novel Time Series conditioned Graph Generation-Generative Adversarial Networks (TSGG-GAN) to handle challenges of rich node-level context structures conditioning and measuring similarities directly between graphs and time series. Extensive experiments on synthetic and real-word gene regulatory networks datasets demonstrate the effectiveness and generalizability of the proposed TSGG-GAN.

  Access Model/Code and Paper
Semantic Example Guided Image-to-Image Translation

Oct 04, 2019
Jialu Huang, Jing Liao, Tak Wu Sam Kwong

Many image-to-image (I2I) translation problems are in nature of high diversity that a single input may have various counterparts. Prior works proposed the multi-modal network that can build a many-to-many mapping between two visual domains. However, most of them are guided by sampled noises. Some others encode the reference images into a latent vector, by which the semantic information of the reference image will be washed away. In this work, we aim to provide a solution to control the output based on references semantically. Given a reference image and an input in another domain, a semantic matching is first performed between the two visual contents and generates the auxiliary image, which is explicitly encouraged to preserve semantic characteristics of the reference. A deep network then is used for I2I translation and the final outputs are expected to be semantically similar to both the input and the reference; however, no such paired data can satisfy that dual-similarity in a supervised fashion, so we build up a self-supervised framework to serve the training purpose. We improve the quality and diversity of the outputs by employing non-local blocks and a multi-task architecture. We assess the proposed method through extensive qualitative and quantitative evaluations and also presented comparisons with several state-of-art models.

* 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works 

  Access Model/Code and Paper
Metric Learning via Maximizing the Lipschitz Margin Ratio

Feb 09, 2018
Mingzhi Dong, Xiaochen Yang, Yang Wu, Jing-Hao Xue

In this paper, we propose the Lipschitz margin ratio and a new metric learning framework for classification through maximizing the ratio. This framework enables the integration of both the inter-class margin and the intra-class dispersion, as well as the enhancement of the generalization ability of a classifier. To introduce the Lipschitz margin ratio and its associated learning bound, we elaborate the relationship between metric learning and Lipschitz functions, as well as the representability and learnability of the Lipschitz functions. After proposing the new metric learning framework based on the introduced Lipschitz margin ratio, we also prove that some well known metric learning algorithms can be shown as special cases of the proposed framework. In addition, we illustrate the framework by implementing it for learning the squared Mahalanobis metric, and by demonstrating its encouraging results on eight popular datasets of machine learning.

  Access Model/Code and Paper
Adaptive Compressive Tracking via Online Vector Boosting Feature Selection

Apr 22, 2015
Qingshan Liu, Jing Yang, Kaihua Zhang, Yi Wu

Recently, the compressive tracking (CT) method has attracted much attention due to its high efficiency, but it cannot well deal with the large scale target appearance variations due to its data-independent random projection matrix that results in less discriminative features. To address this issue, in this paper we propose an adaptive CT approach, which selects the most discriminative features to design an effective appearance model. Our method significantly improves CT in three aspects: Firstly, the most discriminative features are selected via an online vector boosting method. Secondly, the object representation is updated in an effective online manner, which preserves the stable features while filtering out the noisy ones. Finally, a simple and effective trajectory rectification approach is adopted that can make the estimated location more accurate. Extensive experiments on the CVPR2013 tracking benchmark demonstrate the superior performance of our algorithm compared over state-of-the-art tracking algorithms.

  Access Model/Code and Paper
DaST: Data-free Substitute Training for Adversarial Attacks

Mar 28, 2020
Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, Ce Zhu

Machine learning models are vulnerable to adversarial examples. For the black-box setting, current substitute attacks need pre-trained models to generate adversarial examples. However, pre-trained models are hard to obtain in real-world tasks. In this paper, we propose a data-free substitute training method (DaST) to obtain substitute models for adversarial black-box attacks without the requirement of any real data. To achieve this, DaST utilizes specially designed generative adversarial networks (GANs) to train the substitute models. In particular, we design a multi-branch architecture and label-control loss for the generative model to deal with the uneven distribution of synthetic samples. The substitute model is then trained by the synthetic samples generated by the generative model, which are labeled by the attacked model subsequently. The experiments demonstrate the substitute models produced by DaST can achieve competitive performance compared with the baseline models which are trained by the same train set with attacked models. Additionally, to evaluate the practicability of the proposed method on the real-world task, we attack an online machine learning model on the Microsoft Azure platform. The remote model misclassifies 98.35% of the adversarial examples crafted by our method. To the best of our knowledge, we are the first to train a substitute model for adversarial attacks without any real data.

* Accepted by CVPR2020 

  Access Model/Code and Paper
The Conference Paper Assignment Problem: Using Order Weighted Averages to Assign Indivisible Goods

May 19, 2017
Jing Wu Lian, Nicholas Mattei, Renee Noble, Toby Walsh

Motivated by the common academic problem of allocating papers to referees for conference reviewing we propose a novel mechanism for solving the assignment problem when we have a two sided matching problem with preferences from one side (the agents/reviewers) over the other side (the objects/papers) and both sides have capacity constraints. The assignment problem is a fundamental problem in both computer science and economics with application in many areas including task and resource allocation. We draw inspiration from multi-criteria decision making and voting and use order weighted averages (OWAs) to propose a novel and flexible class of algorithms for the assignment problem. We show an algorithm for finding a $\Sigma$-OWA assignment in polynomial time, in contrast to the NP-hardness of finding an egalitarian assignment. Inspired by this setting we observe an interesting connection between our model and the classic proportional multi-winner election problem in social choice.

* 3 Figure 

  Access Model/Code and Paper
VideoSSL: Semi-Supervised Learning for Video Classification

Feb 29, 2020
Longlong Jing, Toufiq Parag, Zhe Wu, Yingli Tian, Hongcheng Wang

We propose a semi-supervised learning approach for video classification, VideoSSL, using convolutional neural networks (CNN). Like other computer vision tasks, existing supervised video classification methods demand a large amount of labeled data to attain good performance. However, annotation of a large dataset is expensive and time consuming. To minimize the dependence on a large annotated dataset, our proposed semi-supervised method trains from a small number of labeled examples and exploits two regulatory signals from unlabeled data. The first signal is the pseudo-labels of unlabeled examples computed from the confidences of the CNN being trained. The other is the normalized probabilities, as predicted by an image classifier CNN, that captures the information about appearances of the interesting objects in the video. We show that, under the supervision of these guiding signals from unlabeled examples, a video classification CNN can achieve impressive performances utilizing a small fraction of annotated examples on three publicly available datasets: UCF101, HMDB51 and Kinetics.

  Access Model/Code and Paper
MW-GAN: Multi-Warping GAN for Caricature Generation with Multi-Style Geometric Exaggeration

Jan 07, 2020
Haodi Hou, Jing Huo, Jing Wu, Yu-Kun Lai, Yang Gao

Given an input face photo, the goal of caricature generation is to produce stylized, exaggerated caricatures that share the same identity as the photo. It requires simultaneous style transfer and shape exaggeration with rich diversity, and meanwhile preserving the identity of the input. To address this challenging problem, we propose a novel framework called Multi-Warping GAN (MW-GAN), including a style network and a geometric network that are designed to conduct style transfer and geometric exaggeration respectively. We bridge the gap between the style and landmarks of an image with corresponding latent code spaces by a dual way design, so as to generate caricatures with arbitrary styles and geometric exaggeration, which can be specified either through random sampling of latent code or from a given caricature sample. Besides, we apply identity preserving loss to both image space and landmark space, leading to a great improvement in quality of generated caricatures. Experiments show that caricatures generated by MW-GAN have better quality than existing methods.

  Access Model/Code and Paper
Graph WaveNet for Deep Spatial-Temporal Graph Modeling

May 31, 2019
Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Chengqi Zhang

Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.

* to be published in IJCAI-2019 

  Access Model/Code and Paper
GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework

May 02, 2018
Lei Deng, Peng Jiao, Jing Pei, Zhenzhi Wu, Guoqi Li

There is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity and the number of states in the discrete space can be flexibly modified to make it suitable for various hardware platforms.

* Neural Networks(Volume 100,April 2018) 
* 11 pages, 13 figures 

  Access Model/Code and Paper
Adversarial Imitation Attack

Mar 28, 2020
Mingyi Zhou, Jing Wu, Yipeng Liu, Shuaicheng Liu, Xiang Zhang, Ce Zhu

Deep learning models are known to be vulnerable to adversarial examples. A practical adversarial attack should require as little as possible knowledge of attacked models. Current substitute attacks need pre-trained models to generate adversarial examples and their attack success rates heavily rely on the transferability of adversarial examples. Current score-based and decision-based attacks require lots of queries for the attacked models. In this study, we propose a novel adversarial imitation attack. First, it produces a replica of the attacked model by a two-player game like the generative adversarial networks (GANs). The objective of the generative model is to generate examples that lead the imitation model returning different outputs with the attacked model. The objective of the imitation model is to output the same labels with the attacked model under the same inputs. Then, the adversarial examples generated by the imitation model are utilized to fool the attacked model. Compared with the current substitute attacks, imitation attacks can use less training data to produce a replica of the attacked model and improve the transferability of adversarial examples. Experiments demonstrate that our imitation attack requires less training data than the black-box substitute attacks, but achieves an attack success rate close to the white-box attack on unseen data with no query.

* 9 pages 

  Access Model/Code and Paper
A Real-Time Deep Network for Crowd Counting

Feb 16, 2020
Xiaowen Shi, Xin Li, Caili Wu, Shuchen Kong, Jing Yang, Liang He

Automatic analysis of highly crowded people has attracted extensive attention from computer vision research. Previous approaches for crowd counting have already achieved promising performance across various benchmarks. However, to deal with the real situation, we hope the model run as fast as possible while keeping accuracy. In this paper, we propose a compact convolutional neural network for crowd counting which learns a more efficient model with a small number of parameters. With three parallel filters executing the convolutional operation on the input image simultaneously at the front of the network, our model could achieve nearly real-time speed and save more computing resources. Experiments on two benchmarks show that our proposed method not only takes a balance between performance and efficiency which is more suitable for actual scenes but also is superior to existing light-weight models in speed.


  Access Model/Code and Paper
Analyzing the Noise Robustness of Deep Neural Networks

Jan 26, 2020
Kelei Cao, Mengchen Liu, Hang Su, Jing Wu, Jun Zhu, Shixia Liu

Adversarial examples, generated by adding small but intentionally imperceptible perturbations to normal examples, can mislead deep neural networks (DNNs) to make incorrect predictions. Although much work has been done on both adversarial attack and defense, a fine-grained understanding of adversarial examples is still lacking. To address this issue, we present a visual analysis method to explain why adversarial examples are misclassified. The key is to compare and analyze the datapaths of both the adversarial and normal examples. A datapath is a group of critical neurons along with their connections. We formulate the datapath extraction as a subset selection problem and solve it by constructing and training a neural network. A multi-level visualization consisting of a network-level visualization of data flows, a layer-level visualization of feature maps, and a neuron-level visualization of learned features, has been designed to help investigate how datapaths of adversarial and normal examples diverge and merge in the prediction process. A quantitative evaluation and a case study were conducted to demonstrate the promise of our method to explain the misclassification of adversarial examples.

  Access Model/Code and Paper
Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning

Nov 19, 2019
Xiang Ni, Jing Li, Mo Yu, Wang Zhou, Kun-Lung Wu

This paper considers the problem of resource allocation in stream processing, where continuous data flows must be processed in real time in a large distributed system. To maximize system throughput, the resource allocation strategy that partitions the computation tasks of a stream processing graph onto computing devices must simultaneously balance workload distribution and minimize communication. Since this problem of graph partitioning is known to be NP-complete yet crucial to practical streaming systems, many heuristic-based algorithms have been developed to find reasonably good solutions. In this paper, we present a graph-aware encoder-decoder framework to learn a generalizable resource allocation strategy that can properly distribute computation tasks of stream processing graphs unobserved from training data. We, for the first time, propose to leverage graph embedding to learn the structural information of the stream processing graphs. Jointly trained with the graph-aware decoder using deep reinforcement learning, our approach can effectively find optimized solutions for unseen graphs. Our experiments show that the proposed model outperforms both METIS, a state-of-the-art graph partitioning algorithm, and an LSTM-based encoder-decoder model, in about 70% of the test cases.

* Accepted by AAAI 2020 

  Access Model/Code and Paper
Video Crowd Counting via Dynamic Temporal Modeling

Jul 04, 2019
Xingjiao Wu, Baohan Xu, Yingbin Zheng, Hao Ye, Jing Yang, Liang He

Crowd counting aims to count the number of instantaneous people in a crowded space, which plays an increasingly important role in the field of public safety. More and more researchers have already proposed many promising solutions to the crowd counting task on the image. With the continuous extension of the application of crowd counting, how to apply the technique to video content has become an urgent problem. At present, although researchers have collected and labeled some video clips, less attention has been drawn to the spatiotemporal characteristics of videos. In order to solve this problem, this paper proposes a novel framework based on dynamic temporal modeling of the relationship between video frames. We model the relationship between adjacent features by constructing a set of dilated residual blocks for crowd counting task, with each phase having an expanded set of time convolutions to generate an initial prediction which is then improved by the next prediction. We extract features from the density map as we find the adjacent density maps share more similar information than original video frames. We also propose a smaller basic network structure to balance the computational cost with a good feature representation. We conduct experiments using the proposed framework on five crowd counting datasets and demonstrate its superiority in terms of effectiveness and efficiency over previous approaches.

* 9 pages, 8 figures 

  Access Model/Code and Paper
Adaptive Scenario Discovery for Crowd Counting

Dec 06, 2018
Xingjiao Wu, Yingbin Zheng, Hao Ye, Wenxin Hu, Jing Yang, Liang He

Crowd counting, i.e., estimation number of pedestrian in crowd images, is emerging as an important research problem with the public security applications. A key ingredient in the design of crowd counting systems is the construction of counting models while being robust to various scenarios under facts such as camera perspective and physical barriers. In this paper, we present an adaptive scenario discovery framework for crowd counting. The system is structured with two parallel pathways that are trained with different sizes of receptive field to represent different scales and crowd densities. After ensuring that these components are present in the proper geometric configuration, a third branch is designed to adaptively recalibrate the pathway-wise responses by discovering and modeling the dynamic scenarios implicitly. Our system is able to represent highly variable crowd images and achieves state-of-the-art results in two challenging benchmarks.

  Access Model/Code and Paper