Models, code, and papers for "Junjun Liu":

Hyperspectral Image Classification in the Presence of Noisy Labels

Sep 12, 2018
Junjun Jiang, Jiayi Ma, Zheng Wang, Chen Chen, Xianming Liu

Label information plays an important role in supervised hyperspectral image classification problem. However, current classification methods all ignore an important and inevitable problem---labels may be corrupted and collecting clean labels for training samples is difficult, and often impractical. Therefore, how to learn from the database with noisy labels is a problem of great practical importance. In this paper, we study the influence of label noise on hyperspectral image classification, and develop a random label propagation algorithm (RLPA) to cleanse the label noise. The key idea of RLPA is to exploit knowledge (e.g., the superpixel based spectral-spatial constraints) from the observed hyperspectral images and apply it to the process of label propagation. Specifically, RLPA first constructs a spectral-spatial probability transfer matrix (SSPTM) that simultaneously considers the spectral similarity and superpixel based spatial information. It then randomly chooses some training samples as "clean" samples and sets the rest as unlabeled samples, and propagates the label information from the "clean" samples to the rest unlabeled samples with the SSPTM. By repeating the random assignment (of "clean" labeled samples and unlabeled samples) and propagation, we can obtain multiple labels for each training sample. Therefore, the final propagated label can be calculated by a majority vote algorithm. Experimental studies show that RLPA can reduce the level of noisy label and demonstrates the advantages of our proposed method over four major classifiers with a significant margin---the gains in terms of the average OA, AA, Kappa are impressive, e.g., 9.18%, 9.58%, and 0.1043. The Matlab source code is available at

* Accepted by IEEE TGRS 

  Access Model/Code and Paper
Tucker Decomposition Network: Expressive Power and Comparison

May 23, 2019
Ye Liu, Junjun Pan, Michael Ng

Deep neural networks have achieved a great success in solving many machine learning and computer vision problems. The main contribution of this paper is to develop a deep network based on Tucker tensor decomposition, and analyze its expressive power. It is shown that the expressiveness of Tucker network is more powerful than that of shallow network. In general, it is required to use an exponential number of nodes in a shallow network in order to represent a Tucker network. Experimental results are also given to compare the performance of the proposed Tucker network with hierarchical tensor network and shallow network, and demonstrate the usefulness of Tucker network in image classification problems.

  Access Model/Code and Paper
ADRN: Attention-based Deep Residual Network for Hyperspectral Image Denoising

Mar 04, 2020
Yongsen Zhao, Deming Zhai, Junjun Jiang, Xianming Liu

Hyperspectral image (HSI) denoising is of crucial importance for many subsequent applications, such as HSI classification and interpretation. In this paper, we propose an attention-based deep residual network to directly learn a mapping from noisy HSI to the clean one. To jointly utilize the spatial-spectral information, the current band and its $K$ adjacent bands are simultaneously exploited as the input. Then, we adopt convolution layer with different filter sizes to fuse the multi-scale feature, and use shortcut connection to incorporate the multi-level information for better noise removal. In addition, the channel attention mechanism is employed to make the network concentrate on the most relevant auxiliary information and features that are beneficial to the denoising process best. To ease the training procedure, we reconstruct the output through a residual mode rather than a straightforward prediction. Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.

  Access Model/Code and Paper
Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant Disease Diagnosis

Mar 18, 2020
Ruifeng Shi, Deming Zhai, Xianming Liu, Junjun Jiang, Wen Gao

Plant diseases serve as one of main threats to food security and crop production. It is thus valuable to exploit recent advances of artificial intelligence to assist plant disease diagnosis. One popular approach is to transform this problem as a leaf image classification task, which can be then addressed by the powerful convolutional neural networks (CNNs). However, the performance of CNN-based classification approach depends on a large amount of high-quality manually labeled training data, which are inevitably introduced noise on labels in practice, leading to model overfitting and performance degradation. To overcome this problem, we propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information. The proposed method enjoys the following merits: i) A rectified meta-learning is designed to pay more attention to unbiased samples, leading to accelerated convergence and improved classification accuracy. ii) Our method is free on assumption of label noise distribution, which works well on various kinds of noise. iii) Our method serves as a plug-and-play module, which can be embedded into any deep models optimized by gradient descent based method. Extensive experiments are conducted to demonstrate the superior performance of our algorithm over the state-of-the-arts.

  Access Model/Code and Paper
Learning from Suspected Target: Bootstrapping Performance for Breast Cancer Detection in Mammography

Mar 01, 2020
Li Xiao, Cheng Zhu, Junjun Liu, Chunlong Luo, Peifang Liu, Yi Zhao

Deep learning object detection algorithm has been widely used in medical image analysis. Currently all the object detection tasks are based on the data annotated with object classes and their bounding boxes. On the other hand, medical images such as mammography usually contain normal regions or objects that are similar to the lesion region, and may be misclassified in the testing stage if they are not taken care of. In this paper, we address such problem by introducing a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions, as well as proposing a similarity loss to further identify suspected targets from targets. Mean average precision (mAP) according to the predicted targets and specificity, sensitivity, accuracy, AUC values according to classification of patients are adopted for performance comparisons. We firstly test our proposed method on a private dense mammogram dataset. Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer. It is worth mention that dense breast typically has a higher risk for developing breast cancers and also are harder for cancer detection in diagnosis, and our method outperforms a reported result from performance of radiologists. Our method is also validated on the public Digital Database for Screening Mammography (DDSM) dataset, brings significant improvement on mass type cancer detection and outperforms the most state-of-the-art work.

  Access Model/Code and Paper
Orthogonal Nonnegative Tucker Decomposition

Oct 27, 2019
Junjun Pan, Michael K. Ng, Ye Liu, Xiongjun Zhang, Hong Yan

In this paper, we study the nonnegative tensor data and propose an orthogonal nonnegative Tucker decomposition (ONTD). We discuss some properties of ONTD and develop a convex relaxation algorithm of the augmented Lagrangian function to solve the optimization problem. The convergence of the algorithm is given. We employ ONTD on the image data sets from the real world applications including face recognition, image representation, hyperspectral unmixing. Numerical results are shown to illustrate the effectiveness of the proposed algorithm.

  Access Model/Code and Paper