Models, code, and papers for "Li Xiao":

Keyphrase Extraction using Sequential Labeling

Aug 03, 2016
Sujatha Das Gollapalli, Xiao-li Li

Keyphrases efficiently summarize a document's content and are used in various document processing and retrieval tasks. Several unsupervised techniques and classifiers exist for extracting keyphrases from text documents. Most of these methods operate at a phrase-level and rely on part-of-speech (POS) filters for candidate phrase generation. In addition, they do not directly handle keyphrases of varying lengths. We overcome these modeling shortcomings by addressing keyphrase extraction as a sequential labeling task in this paper. We explore a basic set of features commonly used in NLP tasks as well as predictions from various unsupervised methods to train our taggers. In addition to a more natural modeling for the keyphrase extraction problem, we show that tagging models yield significant performance benefits over existing state-of-the-art extraction methods.

* 10 pages including 2 pages of references, 6 figures 

  Access Model/Code and Paper
Adversarial adaptive 1-D convolutional neural networks for bearing fault diagnosis under varying working condition

May 09, 2018
Bo Zhang, Wei Li, Jie Hao, Xiao-Li Li, Meng Zhang

Traditional intelligent fault diagnosis of rolling bearings work well only under a common assumption that the labeled training data (source domain) and unlabeled testing data (target domain) are drawn from the same distribution. However, in many real-world applications, this assumption does not hold, especially when the working condition varies. In this paper, a new adversarial adaptive 1-D CNN called A2CNN is proposed to address this problem. A2CNN consists of four parts, namely, a source feature extractor, a target feature extractor, a label classifier and a domain discriminator. The layers between the source and target feature extractor are partially untied during the training stage to take both training efficiency and domain adaptation into consideration. Experiments show that A2CNN has strong fault-discriminative and domain-invariant capacity, and therefore can achieve high accuracy under different working conditions. We also visualize the learned features and the networks to explore the reasons behind the high performance of our proposed model.


  Access Model/Code and Paper
SL$^2$MF: Predicting Synthetic Lethality in Human Cancers via Logistic Matrix Factorization

Oct 20, 2018
Yong Liu, Min Wu, Chenghao Liu, Xiao-Li Li, Jie Zheng

Synthetic lethality (SL) is a promising concept for novel discovery of anti-cancer drug targets. However, wet-lab experiments for detecting SLs are faced with various challenges, such as high cost, low consistency across platforms or cell lines. Therefore, computational prediction methods are needed to address these issues. This paper proposes a novel SL prediction method, named SL2MF, which employs logistic matrix factorization to learn latent representations of genes from the observed SL data. The probability that two genes are likely to form SL is modeled by the linear combination of gene latent vectors. As known SL pairs are more trustworthy than unknown pairs, we design importance weighting schemes to assign higher importance weights for known SL pairs and lower importance weights for unknown pairs in SL2MF. Moreover, we also incorporate biological knowledge about genes from protein-protein interaction (PPI) data and Gene Ontology (GO). In particular, we calculate the similarity between genes based on their GO annotations and topological properties in the PPI network. Extensive experiments on the SL interaction data from SynLethDB database have been conducted to demonstrate the effectiveness of SL2MF.


  Access Model/Code and Paper
Classification and its applications for drug-target interaction identification

Mar 12, 2015
Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang, Xiao-Li Li

Classification is one of the most popular and widely used supervised learning tasks, which categorizes objects into predefined classes based on known knowledge. Classification has been an important research topic in machine learning and data mining. Different classification methods have been proposed and applied to deal with various real-world problems. Unlike unsupervised learning such as clustering, a classifier is typically trained with labeled data before being used to make prediction, and usually achieves higher accuracy than unsupervised one. In this paper, we first define classification and then review several representative methods. After that, we study in details the application of classification to a critical problem in drug discovery, i.e., drug-target prediction, due to the challenges in predicting possible interactions between drugs and targets.


  Access Model/Code and Paper
Hyperbolic Recommender Systems

Sep 05, 2018
Tran Dang Quang Vinh, Yi Tay, Shuai Zhang, Gao Cong, Xiao-Li Li

Many well-established recommender systems are based on representation learning in Euclidean space. In these models, matching functions such as the Euclidean distance or inner product are typically used for computing similarity scores between user and item embeddings. This paper investigates the notion of learning user and item representations in Hyperbolic space. In this paper, we argue that Hyperbolic space is more suitable for learning user-item embeddings in the recommendation domain. Unlike Euclidean spaces, Hyperbolic spaces are intrinsically equipped to handle hierarchical structure, encouraged by its property of exponentially increasing distances away from origin. We propose HyperBPR (Hyperbolic Bayesian Personalized Ranking), a conceptually simple but highly effective model for the task at hand. Our proposed HyperBPR not only outperforms their Euclidean counterparts, but also achieves state-of-the-art performance on multiple benchmark datasets, demonstrating the effectiveness of personalized recommendation in Hyperbolic space.


  Access Model/Code and Paper
Attention-based Group Recommendation

Jul 10, 2018
Tran Dang Quang Vinh, Tuan-Anh Nguyen Pham, Gao Cong, Xiao-Li Li

Group recommendation aims to recommend items for a group of users, e.g., recommending a restaurant for a group of colleagues. The group recommendation problem is challenging, in that a good model should understand the group decision making process appropriately: users are likely to follow decisions of only a few users, who are group's leaders or experts. To address this challenge, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. Moreover, our model can dynamically adjust the weight of each user across the groups; thus, the model provides a new and flexible method to model the complicated group decision making process, which differentiates us from other existing solutions. Through extensive experiments, it has demonstrated that our model significantly outperforms baseline methods for the group recommendation problem.


  Access Model/Code and Paper
Inverse Projection Representation and Category Contribution Rate for Robust Tumor Recognition

Feb 09, 2019
Xiao-Hui Yang, Li Tian, Yun-Mei Chen, Li-Jun Yang, Shuang Xu, Wen-Ming Wu

Sparse representation based classification (SRC) methods have achieved remarkable results. SRC, however, still suffer from requiring enough training samples, insufficient use of test samples and instability of representation. In this paper, a stable inverse projection representation based classification (IPRC) is presented to tackle these problems by effectively using test samples. An IPR is firstly proposed and its feasibility and stability are analyzed. A classification criterion named category contribution rate is constructed to match the IPR and complete classification. Moreover, a statistical measure is introduced to quantify the stability of representation-based classification methods. Based on the IPRC technique, a robust tumor recognition framework is presented by interpreting microarray gene expression data, where a two-stage hybrid gene selection method is introduced to select informative genes. Finally, the functional analysis of candidate's pathogenicity-related genes is given. Extensive experiments on six public tumor microarray gene expression datasets demonstrate the proposed technique is competitive with state-of-the-art methods.

* IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018 
* 14 pages, 19 figures, 10 tables 

  Access Model/Code and Paper
Microbial community pattern detection in human body habitats via ensemble clustering framework

Jan 04, 2015
Peng Yang, Xiaoquan Su, Le Ou-Yang, Hon-Nian Chua, Xiao-Li Li, Kang Ning

The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural patterns. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.

* BMC Systems Biology 2014, 8(Suppl 4):S7 
* BMC Systems Biology 2014 

  Access Model/Code and Paper
Attention-Guided Lightweight Network for Real-Time Segmentation of Robotic Surgical Instruments

Oct 24, 2019
Zhen-Liang Ni, Gui-Bin Bian, Zeng-Guang Hou, Xiao-Hu Zhou, Xiao-Liang Xie, Zhen Li

Real-time segmentation of surgical instruments plays a crucial role in robot-assisted surgery. However, real-time segmentation of surgical instruments using current deep learning models is still a challenging task due to the high computational costs and slow inference speed. In this paper, an attention-guided lightweight network (LWANet), is proposed to segment surgical instruments in real-time. LWANet adopts the encoder-decoder architecture, where the encoder is the lightweight network MobileNetV2 and the decoder consists of depth-wise separable convolution, attention fusion block, and transposed convolution. Depth-wise separable convolution is used as the basic unit to construct the decoder, which can reduce the model size and computational costs. Attention fusion block captures global context and encodes semantic dependencies between channels to emphasize target regions, contributing to locating the surgical instrument. Transposed convolution is performed to upsample the feature map for acquiring refined edges. LWANet can segment surgical instruments in real-time, taking few computational costs. Based on 960*544 inputs, its inference speed can reach 39 fps with only 3.39 GFLOPs. Also, it has a small model size and the number of parameters is only 2.06 M. The proposed network is evaluated on two datasets. It achieves state-of-the-art performance 94.10% mean IOU on Cata7 and obtains a new record on EndoVis 2017 with 4.10% increase on mean mIOU.


  Access Model/Code and Paper
BARNet: Bilinear Attention Network with Adaptive Receptive Field for Surgical Instrument Segmentation

Jan 20, 2020
Zhen-Liang Ni, Gui-Bin Bian, Guan-An Wang, Xiao-Hu Zhou, Zeng-Guang Hou, Xiao-Liang Xie, Zhen Li, Yu-Han Wang

Surgical instrument segmentation is extremely important for computer-assisted surgery. Different from common object segmentation, it is more challenging due to the large illumination and scale variation caused by the special surgical scenes. In this paper, we propose a novel bilinear attention network with adaptive receptive field to solve these two challenges. For the illumination variation, the bilinear attention module can capture second-order statistics to encode global contexts and semantic dependencies between local pixels. With them, semantic features in challenging areas can be inferred from their neighbors and the distinction of various semantics can be boosted. For the scale variation, our adaptive receptive field module aggregates multi-scale features and automatically fuses them with different weights. Specifically, it encodes the semantic relationship between channels to emphasize feature maps with appropriate scales, changing the receptive field of subsequent convolutions. The proposed network achieves the best performance 97.47% mean IOU on Cata7 and comes first place on EndoVis 2017 by 10.10% IOU overtaking second-ranking method.


  Access Model/Code and Paper
RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments

Oct 02, 2019
Zhen-Liang Ni, Gui-Bin Bian, Xiao-Hu Zhou, Zeng-Guang Hou, Xiao-Liang Xie, Chen Wang, Yan-Jie Zhou, Rui-Qi Li, Zhen Li

Semantic segmentation of surgical instruments plays a crucial role in robot-assisted surgery. However, accurate segmentation of cataract surgical instruments is still a challenge due to specular reflection and class imbalance issues. In this paper, an attention-guided network is proposed to segment the cataract surgical instrument. A new attention module is designed to learn discriminative features and address the specular reflection issue. It captures global context and encodes semantic dependencies to emphasize key semantic features, boosting the feature representation. This attention module has very few parameters, which helps to save memory. Thus, it can be flexibly plugged into other networks. Besides, a hybrid loss is introduced to train our network for addressing the class imbalance issue, which merges cross entropy and logarithms of Dice loss. A new dataset named Cata7 is constructed to evaluate our network. To the best of our knowledge, this is the first cataract surgical instrument dataset for semantic segmentation. Based on this dataset, RAUNet achieves state-of-the-art performance 97.71% mean Dice and 95.62% mean IOU.

* Accepted by the 26th International Conference on Neural Information Processing (ICONIP2019). arXiv admin note: cs.CV => eess.IV cs.CV 

  Access Model/Code and Paper
Multiplication fusion of sparse and collaborative-competitive representation for image classification

Jan 20, 2020
Zi-Qi Li, Jun Sun, Xiao-Jun Wu, He-Feng Yin

Representation based classification methods have become a hot research topic during the past few years, and the two most prominent approaches are sparse representation based classification (SRC) and collaborative representation based classification (CRC). CRC reveals that it is the collaborative representation rather than the sparsity that makes SRC successful. Nevertheless, the dense representation of CRC may not be discriminative which will degrade its performance for classification tasks. To alleviate this problem to some extent, we propose a new method called sparse and collaborative-competitive representation based classification (SCCRC) for image classification. Firstly, the coefficients of the test sample are obtained by SRC and CCRC, respectively. Then the fused coefficient is derived by multiplying the coefficients of SRC and CCRC. Finally, the test sample is designated to the class that has the minimum residual. Experimental results on several benchmark databases demonstrate the efficacy of our proposed SCCRC. The source code of SCCRC is accessible at https://github.com/li-zi-qi/SCCRC.

* submitted to International Journal of Machine Learning and Cybernetics 

  Access Model/Code and Paper
Learning efficient structured dictionary for image classification

Feb 09, 2020
Zi-Qi Li, Jun Sun, Xiao-Jun Wu, He-Feng Yin

Recent years have witnessed the success of dictionary learning (DL) based approaches in the domain of pattern classification. In this paper, we present an efficient structured dictionary learning (ESDL) method which takes both the diversity and label information of training samples into account. Specifically, ESDL introduces alternative training samples into the process of dictionary learning. To increase the discriminative capability of representation coefficients for classification, an ideal regularization term is incorporated into the objective function of ESDL. Moreover, in contrast with conventional DL approaches which impose computationally expensive L1-norm constraint on the coefficient matrix, ESDL employs L2-norm regularization term. Experimental results on benchmark databases (including four face databases and one scene dataset) demonstrate that ESDL outperforms previous DL approaches. More importantly, ESDL can be applied in a wide range of pattern classification tasks. The demo code of our proposed ESDL will be available at https://github.com/li-zi-qi/ESDL.

* Submitted to Journal of Electronic Imaging 

  Access Model/Code and Paper
Temporal Logic Guided Safe Reinforcement Learning Using Control Barrier Functions

Mar 23, 2019
Xiao Li, Calin Belta

Using reinforcement learning to learn control policies is a challenge when the task is complex with potentially long horizons. Ensuring adequate but safe exploration is also crucial for controlling physical systems. In this paper, we use temporal logic to facilitate specification and learning of complex tasks. We combine temporal logic with control Lyapunov functions to improve exploration. We incorporate control barrier functions to safeguard the exploration and deployment process. We develop a flexible and learnable system that allows users to specify task objectives and constraints in different forms and at various levels. The framework is also able to take advantage of known system dynamics and handle unknown environmental dynamics by integrating model-free learning with model-based planning.


  Access Model/Code and Paper
Joint group and residual sparse coding for image compressive sensing

Jan 23, 2019
Lizhao Li, Song Xiao

Nonlocal self-similarity and group sparsity have been widely utilized in image compressive sensing (CS). However, when the sampling rate is low, the internal prior information of degraded images may be not enough for accurate restoration, resulting in loss of image edges and details. In this paper, we propose a joint group and residual sparse coding method for CS image recovery (JGRSC-CS). In the proposed JGRSC-CS, patch group is treated as the basic unit of sparse coding and two dictionaries (namely internal and external dictionaries) are applied to exploit the sparse representation of each group simultaneously. The internal self-adaptive dictionary is used to remove artifacts, and an external Gaussian Mixture Model (GMM) dictionary, learned from clean training images, is used to enhance details and texture. To make the proposed method effective and robust, the split Bregman method is adopted to reconstruct the whole image. Experimental results manifest the proposed JGRSC-CS algorithm outperforms existing state-of-the-art methods in both peak signal to noise ratio (PSNR) and visual quality.

* 27 pages, 7 figures 

  Access Model/Code and Paper
A Syntactically Constrained Bidirectional-Asynchronous Approach for Emotional Conversation Generation

Aug 27, 2018
Jingyuan Li, Xiao Sun

Traditional neural language models tend to generate generic replies with poor logic and no emotion. In this paper, a syntactically constrained bidirectional-asynchronous approach for emotional conversation generation (E-SCBA) is proposed to address this issue. In our model, pre-generated emotion keywords and topic keywords are asynchronously introduced into the process of decoding. It is much different from most existing methods which generate replies from the first word to the last. Through experiments, the results indicate that our approach not only improves the diversity of replies, but gains a boost on both logic and emotion compared with baselines.

* EMNLP 2018 

  Access Model/Code and Paper
A Hierarchical Reinforcement Learning Method for Persistent Time-Sensitive Tasks

Jun 20, 2016
Xiao Li, Calin Belta

Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training cases


  Access Model/Code and Paper
On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond

Aug 06, 2019
Xiao-Tong Yuan, Ping Li

The DANE algorithm is an approximate Newton method popularly used for communication-efficient distributed machine learning. Reasons for the interest in DANE include scalability and versatility. Convergence of DANE, however, can be tricky; its appealing convergence rate is only rigorous for quadratic objective, and for more general convex functions the known results are no stronger than those of the classic first-order methods. To remedy these drawbacks, we propose in this paper some new alternatives of DANE which are more suitable for analysis. We first introduce a simple variant of DANE equipped with backtracking line search, for which global asymptotic convergence and sharper local non-asymptotic convergence rate guarantees can be proved for both quadratic and non-quadratic strongly convex functions. Then we propose a heavy-ball method to accelerate the convergence of DANE, showing that nearly tight local rate of convergence can be established for strongly convex functions, and with proper modification of algorithm the same result applies globally to linear prediction models. Numerical evidence is provided to confirm the theoretical and practical advantages of our methods.


  Access Model/Code and Paper