Models, code, and papers for "Luke Zettlemoyer":

Sparse Networks from Scratch: Faster Training without Losing Performance

Aug 23, 2019
Tim Dettmers, Luke Zettlemoyer

We demonstrate the possibility of what we call sparse learning: accelerated training of deep neural networks that maintain sparse weights throughout training while achieving dense performance levels. We accomplish this by developing sparse momentum, an algorithm which uses exponentially smoothed gradients (momentum) to identify layers and weights which reduce the error efficiently. Sparse momentum redistributes pruned weights across layers according to the mean momentum magnitude of each layer. Within a layer, sparse momentum grows weights according to the momentum magnitude of zero-valued weights. We demonstrate state-of-the-art sparse performance on MNIST, CIFAR-10, and ImageNet, decreasing the mean error by a relative 8%, 15%, and 6% compared to other sparse algorithms. Furthermore, we show that sparse momentum reliably reproduces dense performance levels while providing up to 5.61x faster training. In our analysis, ablations show that the benefits of momentum redistribution and growth increase with the depth and size of the network. Additionally, we find that sparse momentum is insensitive to the choice of its hyperparameters suggesting that sparse momentum is robust and easy to use.

* 9 page NeurIPS 2019 submission 

  Click for Model/Code and Paper
Better Character Language Modeling Through Morphology

Jun 12, 2019
Terra Blevins, Luke Zettlemoyer

We incorporate morphological supervision into character language models (CLMs) via multitasking and show that this addition improves bits-per-character (BPC) performance across 24 languages, even when the morphology data and language modeling data are disjoint. Analyzing the CLMs shows that inflected words benefit more from explicitly modeling morphology than uninflected words, and that morphological supervision improves performance even as the amount of language modeling data grows. We then transfer morphological supervision across languages to improve language modeling performance in the low-resource setting.

* Accepted to ACL 2019 

  Click for Model/Code and Paper
E3: Entailment-driven Extracting and Editing for Conversational Machine Reading

Jun 12, 2019
Victor Zhong, Luke Zettlemoyer

Conversational machine reading systems help users answer high-level questions (e.g. determine if they qualify for particular government benefits) when they do not know the exact rules by which the determination is made(e.g. whether they need certain income levels or veteran status). The key challenge is that these rules are only provided in the form of a procedural text (e.g. guidelines from government website) which the system must read to figure out what to ask the user. We present a new conversational machine reading model that jointly extracts a set of decision rules from the procedural text while reasoning about which are entailed by the conversational history and which still need to be edited to create questions for the user. On the recently introduced ShARC conversational machine reading dataset, our Entailment-driven Extract and Edit network (E3) achieves a new state-of-the-art, outperforming existing systems as well as a new BERT-based baseline. In addition, by explicitly highlighting which information still needs to be gathered, E3 provides a more explainable alternative to prior work. We release source code for our models and experiments at

* Published at the Annual Meeting of the Association for Computational Linguistics (ACL) 2019. Source code: 10 pages, 5 figures 

  Click for Model/Code and Paper
SimpleQuestions Nearly Solved: A New Upperbound and Baseline Approach

Apr 24, 2018
Michael Petrochuk, Luke Zettlemoyer

The SimpleQuestions dataset is one of the most commonly used benchmarks for studying single-relation factoid questions. In this paper, we present new evidence that this benchmark can be nearly solved by standard methods. First we show that ambiguity in the data bounds performance on this benchmark at 83.4%; there are often multiple answers that cannot be disambiguated from the linguistic signal alone. Second we introduce a baseline that sets a new state-of-the-art performance level at 78.1% accuracy, despite using standard methods. Finally, we report an empirical analysis showing that the upperbound is loose; roughly a third of the remaining errors are also not resolvable from the linguistic signal. Together, these results suggest that the SimpleQuestions dataset is nearly solved.

  Click for Model/Code and Paper
Higher-order Coreference Resolution with Coarse-to-fine Inference

Apr 15, 2018
Kenton Lee, Luheng He, Luke Zettlemoyer

We introduce a fully differentiable approximation to higher-order inference for coreference resolution. Our approach uses the antecedent distribution from a span-ranking architecture as an attention mechanism to iteratively refine span representations. This enables the model to softly consider multiple hops in the predicted clusters. To alleviate the computational cost of this iterative process, we introduce a coarse-to-fine approach that incorporates a less accurate but more efficient bilinear factor, enabling more aggressive pruning without hurting accuracy. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the English OntoNotes benchmark, while being far more computationally efficient.

* Accepted to NAACL 2018 

  Click for Model/Code and Paper
Learning to Map Sentences to Logical Form: Structured Classification with Probabilistic Categorial Grammars

Jul 04, 2012
Luke S. Zettlemoyer, Michael Collins

This paper addresses the problem of mapping natural language sentences to lambda-calculus encodings of their meaning. We describe a learning algorithm that takes as input a training set of sentences labeled with expressions in the lambda calculus. The algorithm induces a grammar for the problem, along with a log-linear model that represents a distribution over syntactic and semantic analyses conditioned on the input sentence. We apply the method to the task of learning natural language interfaces to databases and show that the learned parsers outperform previous methods in two benchmark database domains.

* Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005) 

  Click for Model/Code and Paper
Semi-Autoregressive Training Improves Mask-Predict Decoding

Jan 23, 2020
Marjan Ghazvininejad, Omer Levy, Luke Zettlemoyer

The recently proposed mask-predict decoding algorithm has narrowed the performance gap between semi-autoregressive machine translation models and the traditional left-to-right approach. We introduce a new training method for conditional masked language models, SMART, which mimics the semi-autoregressive behavior of mask-predict, producing training examples that contain model predictions as part of their inputs. Models trained with SMART produce higher-quality translations when using mask-predict decoding, effectively closing the remaining performance gap with fully autoregressive models.

  Click for Model/Code and Paper
JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation

Oct 09, 2019
Rajas Agashe, Srinivasan Iyer, Luke Zettlemoyer

Interactive programming with interleaved code snippet cells and natural language markdown is recently gaining popularity in the form of Jupyter notebooks, which accelerate prototyping and collaboration. To study code generation conditioned on a long context history, we present JuICe, a corpus of 1.5 million examples with a curated test set of 3.7K instances based on online programming assignments. Compared with existing contextual code generation datasets, JuICe provides refined human-curated data, open-domain code, and an order of magnitude more training data. Using JuICe, we train models for two tasks: (1) generation of the API call sequence in a code cell, and (2) full code cell generation, both conditioned on the NL-Code history up to a particular code cell. Experiments using current baseline code generation models show that both context and distant supervision aid in generation, and that the dataset is challenging for current systems.

  Click for Model/Code and Paper
Don't Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases

Sep 09, 2019
Christopher Clark, Mark Yatskar, Luke Zettlemoyer

State-of-the-art models often make use of superficial patterns in the data that do not generalize well to out-of-domain or adversarial settings. For example, textual entailment models often learn that particular key words imply entailment, irrespective of context, and visual question answering models learn to predict prototypical answers, without considering evidence in the image. In this paper, we show that if we have prior knowledge of such biases, we can train a model to be more robust to domain shift. Our method has two stages: we (1) train a naive model that makes predictions exclusively based on dataset biases, and (2) train a robust model as part of an ensemble with the naive one in order to encourage it to focus on other patterns in the data that are more likely to generalize. Experiments on five datasets with out-of-domain test sets show significantly improved robustness in all settings, including a 12 point gain on a changing priors visual question answering dataset and a 9 point gain on an adversarial question answering test set.

* In EMNLP 2019 

  Click for Model/Code and Paper
Evaluating Gender Bias in Machine Translation

Jun 03, 2019
Gabriel Stanovsky, Noah A. Smith, Luke Zettlemoyer

We present the first challenge set and evaluation protocol for the analysis of gender bias in machine translation (MT). Our approach uses two recent coreference resolution datasets composed of English sentences which cast participants into non-stereotypical gender roles (e.g., "The doctor asked the nurse to help her in the operation"). We devise an automatic gender bias evaluation method for eight target languages with grammatical gender, based on morphological analysis (e.g., the use of female inflection for the word "doctor"). Our analyses show that four popular industrial MT systems and two recent state-of-the-art academic MT models are significantly prone to gender-biased translation errors for all tested target languages. Our data and code are made publicly available.

* Accepted to ACL 2019 

  Click for Model/Code and Paper
Transformers with convolutional context for ASR

Apr 26, 2019
Abdelrahman Mohamed, Dmytro Okhonko, Luke Zettlemoyer

The recent success of transformer networks for neural machine translation and other NLP tasks has led to a surge in research work trying to apply it for speech recognition. Recent efforts studied key research questions around ways of combining positional embedding with speech features, and stability of optimization for large scale learning of transformer networks. In this paper, we propose replacing the sinusoidal positional embedding for transformers with convolutionally learned input representations. These contextual representations provide subsequent transformer blocks with relative positional information needed for discovering long-range relationships between local concepts. The proposed system has favorable optimization characteristics where our reported results are produced with fixed learning rate of 1.0 and no warmup steps. The proposed model reduces the word error rate (WER) by 12% and 16% relative to previously published work on Librispeech "dev other" and "test other" subsets respectively, when no extra LM text is provided. Full code to reproduce our results will be available online at the time of publication.

  Click for Model/Code and Paper
Learning Programmatic Idioms for Scalable Semantic Parsing

Apr 19, 2019
Srinivasan Iyer, Alvin Cheung, Luke Zettlemoyer

Programmers typically organize executable source code using high-level coding patterns or idiomatic structures such as nested loops, exception handlers and recursive blocks, rather than as individual code tokens. In contrast, state of the art semantic parsers still map natural language instructions to source code by building the code syntax tree one node at a time. In this paper, we introduce an iterative method to extract code idioms from large source code corpora by repeatedly collapsing most-frequent depth-2 subtrees of their syntax trees, and we train semantic parsers to apply these idioms during decoding. We apply this idiom-based code generation to a recent context-dependent semantic parsing task, and improve the state of the art by 2.2% BLEU score while reducing training time by more than 50%. This improved speed enables us to scale up the model by training on an extended training set that is 5x times larger, to further move up the state of the art by an additional 2.3% BLEU and 0.9% exact match.

  Click for Model/Code and Paper
The Referential Reader: A Recurrent Entity Network for Anaphora Resolution

Feb 05, 2019
Fei Liu, Luke Zettlemoyer, Jacob Eisenstein

We present a new architecture for storing and accessing entity mentions during online text processing. While reading the text, entity references are identified, and may be stored by either updating or overwriting a cell in a fixed-length memory. The update operation implies coreference with the other mentions that are stored in the same cell; the overwrite operations causes these mentions to be forgotten. By encoding the memory operations as differentiable gates, it is possible to train the model end-to-end, using both a supervised anaphora resolution objective as well as a supplementary language modeling objective. Evaluation on a dataset of pronoun-name anaphora demonstrates that the model achieves state-of-the-art performance with purely left-to-right processing of the text.

* in review 

  Click for Model/Code and Paper
Deep RNNs Encode Soft Hierarchical Syntax

May 11, 2018
Terra Blevins, Omer Levy, Luke Zettlemoyer

We present a set of experiments to demonstrate that deep recurrent neural networks (RNNs) learn internal representations that capture soft hierarchical notions of syntax from highly varied supervision. We consider four syntax tasks at different depths of the parse tree; for each word, we predict its part of speech as well as the first (parent), second (grandparent) and third level (great-grandparent) constituent labels that appear above it. These predictions are made from representations produced at different depths in networks that are pretrained with one of four objectives: dependency parsing, semantic role labeling, machine translation, or language modeling. In every case, we find a correspondence between network depth and syntactic depth, suggesting that a soft syntactic hierarchy emerges. This effect is robust across all conditions, indicating that the models encode significant amounts of syntax even in the absence of an explicit syntactic training supervision.

* Accepted to ACL 2018 

  Click for Model/Code and Paper
Recurrent Additive Networks

Jun 29, 2017
Kenton Lee, Omer Levy, Luke Zettlemoyer

We introduce recurrent additive networks (RANs), a new gated RNN which is distinguished by the use of purely additive latent state updates. At every time step, the new state is computed as a gated component-wise sum of the input and the previous state, without any of the non-linearities commonly used in RNN transition dynamics. We formally show that RAN states are weighted sums of the input vectors, and that the gates only contribute to computing the weights of these sums. Despite this relatively simple functional form, experiments demonstrate that RANs perform on par with LSTMs on benchmark language modeling problems. This result shows that many of the non-linear computations in LSTMs and related networks are not essential, at least for the problems we consider, and suggests that the gates are doing more of the computational work than previously understood.

  Click for Model/Code and Paper
Global Neural CCG Parsing with Optimality Guarantees

Sep 24, 2016
Kenton Lee, Mike Lewis, Luke Zettlemoyer

We introduce the first global recursive neural parsing model with optimality guarantees during decoding. To support global features, we give up dynamic programs and instead search directly in the space of all possible subtrees. Although this space is exponentially large in the sentence length, we show it is possible to learn an efficient A* parser. We augment existing parsing models, which have informative bounds on the outside score, with a global model that has loose bounds but only needs to model non-local phenomena. The global model is trained with a new objective that encourages the parser to explore a tiny fraction of the search space. The approach is applied to CCG parsing, improving state-of-the-art accuracy by 0.4 F1. The parser finds the optimal parse for 99.9% of held-out sentences, exploring on average only 190 subtrees.

  Click for Model/Code and Paper
Neural Metaphor Detection in Context

Aug 29, 2018
Ge Gao, Eunsol Choi, Yejin Choi, Luke Zettlemoyer

We present end-to-end neural models for detecting metaphorical word use in context. We show that relatively standard BiLSTM models which operate on complete sentences work well in this setting, in comparison to previous work that used more restricted forms of linguistic context. These models establish a new state-of-the-art on existing verb metaphor detection benchmarks, and show strong performance on jointly predicting the metaphoricity of all words in a running text.

* EMNLP 2018 

  Click for Model/Code and Paper
Jointly Predicting Predicates and Arguments in Neural Semantic Role Labeling

Aug 13, 2018
Luheng He, Kenton Lee, Omer Levy, Luke Zettlemoyer

Recent BIO-tagging-based neural semantic role labeling models are very high performing, but assume gold predicates as part of the input and cannot incorporate span-level features. We propose an end-to-end approach for jointly predicting all predicates, arguments spans, and the relations between them. The model makes independent decisions about what relationship, if any, holds between every possible word-span pair, and learns contextualized span representations that provide rich, shared input features for each decision. Experiments demonstrate that this approach sets a new state of the art on PropBank SRL without gold predicates.

* 5 pages, ACL 2018 

  Click for Model/Code and Paper