Models, code, and papers for "Minh-Thang Luong":

Latent Topic Conversational Models

Sep 19, 2018
Tsung-Hsien Wen, Minh-Thang Luong

Latent variable models have been a preferred choice in conversational modeling compared to sequence-to-sequence (seq2seq) models which tend to generate generic and repetitive responses. Despite so, training latent variable models remains to be difficult. In this paper, we propose Latent Topic Conversational Model (LTCM) which augments seq2seq with a neural latent topic component to better guide response generation and make training easier. The neural topic component encodes information from the source sentence to build a global "topic" distribution over words, which is then consulted by the seq2seq model at each generation step. We study in details how the latent representation is learnt in both the vanilla model and LTCM. Our extensive experiments contribute to better understanding and training of conditional latent models for languages. Our results show that by sampling from the learnt latent representations, LTCM can generate diverse and interesting responses. In a subjective human evaluation, the judges also confirm that LTCM is the overall preferred option.


  Click for Model/Code and Paper
Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models

Jun 23, 2016
Minh-Thang Luong, Christopher D. Manning

Nearly all previous work on neural machine translation (NMT) has used quite restricted vocabularies, perhaps with a subsequent method to patch in unknown words. This paper presents a novel word-character solution to achieving open vocabulary NMT. We build hybrid systems that translate mostly at the word level and consult the character components for rare words. Our character-level recurrent neural networks compute source word representations and recover unknown target words when needed. The twofold advantage of such a hybrid approach is that it is much faster and easier to train than character-based ones; at the same time, it never produces unknown words as in the case of word-based models. On the WMT'15 English to Czech translation task, this hybrid approach offers an addition boost of +2.1-11.4 BLEU points over models that already handle unknown words. Our best system achieves a new state-of-the-art result with 20.7 BLEU score. We demonstrate that our character models can successfully learn to not only generate well-formed words for Czech, a highly-inflected language with a very complex vocabulary, but also build correct representations for English source words.

* 11pages, 4 figures. ACL 2016 camera-ready version. SOTA WMT'15 English-Czech 20.7 BLEU (+2.1-11.4 points) 

  Click for Model/Code and Paper
On the Effective Use of Pretraining for Natural Language Inference

Oct 05, 2017
Ignacio Cases, Minh-Thang Luong, Christopher Potts

Neural networks have excelled at many NLP tasks, but there remain open questions about the performance of pretrained distributed word representations and their interaction with weight initialization and other hyperparameters. We address these questions empirically using attention-based sequence-to-sequence models for natural language inference (NLI). Specifically, we compare three types of embeddings: random, pretrained (GloVe, word2vec), and retrofitted (pretrained plus WordNet information). We show that pretrained embeddings outperform both random and retrofitted ones in a large NLI corpus. Further experiments on more controlled data sets shed light on the contexts for which retrofitted embeddings can be useful. We also explore two principled approaches to initializing the rest of the model parameters, Gaussian and orthogonal, showing that the latter yields gains of up to 2.9% in the NLI task.

* This manuscript dates from late Winter 2016 

  Click for Model/Code and Paper
A Hierarchical Neural Autoencoder for Paragraphs and Documents

Jun 06, 2015
Jiwei Li, Minh-Thang Luong, Dan Jurafsky

Natural language generation of coherent long texts like paragraphs or longer documents is a challenging problem for recurrent networks models. In this paper, we explore an important step toward this generation task: training an LSTM (Long-short term memory) auto-encoder to preserve and reconstruct multi-sentence paragraphs. We introduce an LSTM model that hierarchically builds an embedding for a paragraph from embeddings for sentences and words, then decodes this embedding to reconstruct the original paragraph. We evaluate the reconstructed paragraph using standard metrics like ROUGE and Entity Grid, showing that neural models are able to encode texts in a way that preserve syntactic, semantic, and discourse coherence. While only a first step toward generating coherent text units from neural models, our work has the potential to significantly impact natural language generation and summarization\footnote{Code for the three models described in this paper can be found at www.stanford.edu/~jiweil/ .


  Click for Model/Code and Paper
A Hybrid Morpheme-Word Representation for Machine Translation of Morphologically Rich Languages

Nov 19, 2019
Minh-Thang Luong, Preslav Nakov, Min-Yen Kan

We propose a language-independent approach for improving statistical machine translation for morphologically rich languages using a hybrid morpheme-word representation where the basic unit of translation is the morpheme, but word boundaries are respected at all stages of the translation process. Our model extends the classic phrase-based model by means of (1) word boundary-aware morpheme-level phrase extraction, (2) minimum error-rate training for a morpheme-level translation model using word-level BLEU, and (3) joint scoring with morpheme- and word-level language models. Further improvements are achieved by combining our model with the classic one. The evaluation on English to Finnish using Europarl (714K sentence pairs; 15.5M English words) shows statistically significant improvements over the classic model based on BLEU and human judgments.

* EMNLP-2010 

  Click for Model/Code and Paper
Efficient Attention using a Fixed-Size Memory Representation

Jul 01, 2017
Denny Britz, Melody Y. Guan, Minh-Thang Luong

The standard content-based attention mechanism typically used in sequence-to-sequence models is computationally expensive as it requires the comparison of large encoder and decoder states at each time step. In this work, we propose an alternative attention mechanism based on a fixed size memory representation that is more efficient. Our technique predicts a compact set of K attention contexts during encoding and lets the decoder compute an efficient lookup that does not need to consult the memory. We show that our approach performs on-par with the standard attention mechanism while yielding inference speedups of 20% for real-world translation tasks and more for tasks with longer sequences. By visualizing attention scores we demonstrate that our models learn distinct, meaningful alignments.

* EMNLP 2017 

  Click for Model/Code and Paper
Compression of Neural Machine Translation Models via Pruning

Jun 29, 2016
Abigail See, Minh-Thang Luong, Christopher D. Manning

Neural Machine Translation (NMT), like many other deep learning domains, typically suffers from over-parameterization, resulting in large storage sizes. This paper examines three simple magnitude-based pruning schemes to compress NMT models, namely class-blind, class-uniform, and class-distribution, which differ in terms of how pruning thresholds are computed for the different classes of weights in the NMT architecture. We demonstrate the efficacy of weight pruning as a compression technique for a state-of-the-art NMT system. We show that an NMT model with over 200 million parameters can be pruned by 40% with very little performance loss as measured on the WMT'14 English-German translation task. This sheds light on the distribution of redundancy in the NMT architecture. Our main result is that with retraining, we can recover and even surpass the original performance with an 80%-pruned model.

* Accepted to CoNLL 2016. 9 pages plus references 

  Click for Model/Code and Paper
Effective Approaches to Attention-based Neural Machine Translation

Sep 20, 2015
Minh-Thang Luong, Hieu Pham, Christopher D. Manning

An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches over the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems which already incorporate known techniques such as dropout. Our ensemble model using different attention architectures has established a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.

* 11 pages, 7 figures, EMNLP 2015 camera-ready version, more training details 

  Click for Model/Code and Paper
Selfie: Self-supervised Pretraining for Image Embedding

Jul 23, 2019
Trieu H. Trinh, Minh-Thang Luong, Quoc V. Le

We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs.


  Click for Model/Code and Paper
Massive Exploration of Neural Machine Translation Architectures

Mar 21, 2017
Denny Britz, Anna Goldie, Minh-Thang Luong, Quoc Le

Neural Machine Translation (NMT) has shown remarkable progress over the past few years with production systems now being deployed to end-users. One major drawback of current architectures is that they are expensive to train, typically requiring days to weeks of GPU time to converge. This makes exhaustive hyperparameter search, as is commonly done with other neural network architectures, prohibitively expensive. In this work, we present the first large-scale analysis of NMT architecture hyperparameters. We report empirical results and variance numbers for several hundred experimental runs, corresponding to over 250,000 GPU hours on the standard WMT English to German translation task. Our experiments lead to novel insights and practical advice for building and extending NMT architectures. As part of this contribution, we release an open-source NMT framework that enables researchers to easily experiment with novel techniques and reproduce state of the art results.

* 9 pages, 2 figures, 8 tables, submitted to ACL 2017, open source code at https://github.com/google/seq2seq/ 

  Click for Model/Code and Paper
When Are Tree Structures Necessary for Deep Learning of Representations?

Aug 18, 2015
Jiwei Li, Minh-Thang Luong, Dan Jurafsky, Eudard Hovy

Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models.


  Click for Model/Code and Paper
Self-training with Noisy Student improves ImageNet classification

Nov 11, 2019
Qizhe Xie, Eduard Hovy, Minh-Thang Luong, Quoc V. Le

We present a simple self-training method that achieves 87.4% top-1 accuracy on ImageNet, which is 1.0% better than the state-of-the-art model that requires 3.5B weakly labeled Instagram images. On robustness test sets, it improves ImageNet-A top-1 accuracy from 16.6% to 74.2%, reduces ImageNet-C mean corruption error from 45.7 to 31.2, and reduces ImageNet-P mean flip rate from 27.8 to 16.1. To achieve this result, we first train an EfficientNet model on labeled ImageNet images and use it as a teacher to generate pseudo labels on 300M unlabeled images. We then train a larger EfficientNet as a student model on the combination of labeled and pseudo labeled images. We iterate this process by putting back the student as the teacher. During the generation of the pseudo labels, the teacher is not noised so that the pseudo labels are as good as possible. But during the learning of the student, we inject noise such as data augmentation, dropout, stochastic depth to the student so that the noised student is forced to learn harder from the pseudo labels.


  Click for Model/Code and Paper
Semi-Supervised Sequence Modeling with Cross-View Training

Sep 22, 2018
Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc V. Le

Unsupervised representation learning algorithms such as word2vec and ELMo improve the accuracy of many supervised NLP models, mainly because they can take advantage of large amounts of unlabeled text. However, the supervised models only learn from task-specific labeled data during the main training phase. We therefore propose Cross-View Training (CVT), a semi-supervised learning algorithm that improves the representations of a Bi-LSTM sentence encoder using a mix of labeled and unlabeled data. On labeled examples, standard supervised learning is used. On unlabeled examples, CVT teaches auxiliary prediction modules that see restricted views of the input (e.g., only part of a sentence) to match the predictions of the full model seeing the whole input. Since the auxiliary modules and the full model share intermediate representations, this in turn improves the full model. Moreover, we show that CVT is particularly effective when combined with multi-task learning. We evaluate CVT on five sequence tagging tasks, machine translation, and dependency parsing, achieving state-of-the-art results.

* EMNLP 2018 

  Click for Model/Code and Paper
Findings of the Second Workshop on Neural Machine Translation and Generation

Jun 18, 2018
Alexandra Birch, Andrew Finch, Minh-Thang Luong, Graham Neubig, Yusuke Oda

This document describes the findings of the Second Workshop on Neural Machine Translation and Generation, held in concert with the annual conference of the Association for Computational Linguistics (ACL 2018). First, we summarize the research trends of papers presented in the proceedings, and note that there is particular interest in linguistic structure, domain adaptation, data augmentation, handling inadequate resources, and analysis of models. Second, we describe the results of the workshop's shared task on efficient neural machine translation, where participants were tasked with creating MT systems that are both accurate and efficient.

* WNMT 2018 

  Click for Model/Code and Paper
Unsupervised Data Augmentation

Apr 29, 2019
Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, Quoc V. Le

Despite its success, deep learning still needs large labeled datasets to succeed. Data augmentation has shown much promise in alleviating the need for more labeled data, but it so far has mostly been applied in supervised settings and achieved limited gains. In this work, we propose to apply data augmentation to unlabeled data in a semi-supervised learning setting. Our method, named Unsupervised Data Augmentation or UDA, encourages the model predictions to be consistent between an unlabeled example and an augmented unlabeled example. Unlike previous methods that use random noise such as Gaussian noise or dropout noise, UDA has a small twist in that it makes use of harder and more realistic noise generated by state-of-the-art data augmentation methods. This small twist leads to substantial improvements on six language tasks and three vision tasks even when the labeled set is extremely small. For example, on the IMDb text classification dataset, with only 20 labeled examples, UDA outperforms the state-of-the-art model trained on 25,000 labeled examples. On standard semi-supervised learning benchmarks, CIFAR-10 with 4,000 examples and SVHN with 1,000 examples, UDA outperforms all previous approaches and reduces more than $30\%$ of the error rates of state-of-the-art methods: going from 7.66% to 5.27% and from 3.53% to 2.46% respectively. UDA also works well on datasets that have a lot of labeled data. For example, on ImageNet, with 1.3M extra unlabeled data, UDA improves the top-1/top-5 accuracy from 78.28/94.36% to 79.04/94.45% when compared to AutoAugment.


  Click for Model/Code and Paper
Learning Longer-term Dependencies in RNNs with Auxiliary Losses

Jun 13, 2018
Trieu H. Trinh, Andrew M. Dai, Minh-Thang Luong, Quoc V. Le

Despite recent advances in training recurrent neural networks (RNNs), capturing long-term dependencies in sequences remains a fundamental challenge. Most approaches use backpropagation through time (BPTT), which is difficult to scale to very long sequences. This paper proposes a simple method that improves the ability to capture long term dependencies in RNNs by adding an unsupervised auxiliary loss to the original objective. This auxiliary loss forces RNNs to either reconstruct previous events or predict next events in a sequence, making truncated backpropagation feasible for long sequences and also improving full BPTT. We evaluate our method on a variety of settings, including pixel-by-pixel image classification with sequence lengths up to 16\,000, and a real document classification benchmark. Our results highlight good performance and resource efficiency of this approach over competitive baselines, including other recurrent models and a comparable sized Transformer. Further analyses reveal beneficial effects of the auxiliary loss on optimization and regularization, as well as extreme cases where there is little to no backpropagation.

* ICML 2018 

  Click for Model/Code and Paper
Online and Linear-Time Attention by Enforcing Monotonic Alignments

Jun 29, 2017
Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck

Recurrent neural network models with an attention mechanism have proven to be extremely effective on a wide variety of sequence-to-sequence problems. However, the fact that soft attention mechanisms perform a pass over the entire input sequence when producing each element in the output sequence precludes their use in online settings and results in a quadratic time complexity. Based on the insight that the alignment between input and output sequence elements is monotonic in many problems of interest, we propose an end-to-end differentiable method for learning monotonic alignments which, at test time, enables computing attention online and in linear time. We validate our approach on sentence summarization, machine translation, and online speech recognition problems and achieve results competitive with existing sequence-to-sequence models.

* ICML camera-ready version; 10 pages + 9 page appendix 

  Click for Model/Code and Paper
Multi-task Sequence to Sequence Learning

Mar 01, 2016
Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, Lukasz Kaiser

Sequence to sequence learning has recently emerged as a new paradigm in supervised learning. To date, most of its applications focused on only one task and not much work explored this framework for multiple tasks. This paper examines three multi-task learning (MTL) settings for sequence to sequence models: (a) the oneto-many setting - where the encoder is shared between several tasks such as machine translation and syntactic parsing, (b) the many-to-one setting - useful when only the decoder can be shared, as in the case of translation and image caption generation, and (c) the many-to-many setting - where multiple encoders and decoders are shared, which is the case with unsupervised objectives and translation. Our results show that training on a small amount of parsing and image caption data can improve the translation quality between English and German by up to 1.5 BLEU points over strong single-task baselines on the WMT benchmarks. Furthermore, we have established a new state-of-the-art result in constituent parsing with 93.0 F1. Lastly, we reveal interesting properties of the two unsupervised learning objectives, autoencoder and skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.

* 10 pages, 4 figures, ICLR 2016 camera-ready, added parsing SOTA results 

  Click for Model/Code and Paper
Addressing the Rare Word Problem in Neural Machine Translation

May 30, 2015
Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, Wojciech Zaremba

Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk symbol that represents every possible out-of-vocabulary (OOV) word. In this paper, we propose and implement an effective technique to address this problem. We train an NMT system on data that is augmented by the output of a word alignment algorithm, allowing the NMT system to emit, for each OOV word in the target sentence, the position of its corresponding word in the source sentence. This information is later utilized in a post-processing step that translates every OOV word using a dictionary. Our experiments on the WMT14 English to French translation task show that this method provides a substantial improvement of up to 2.8 BLEU points over an equivalent NMT system that does not use this technique. With 37.5 BLEU points, our NMT system is the first to surpass the best result achieved on a WMT14 contest task.

* ACL 2015 camera-ready version 

  Click for Model/Code and Paper