Models, code, and papers for "Nigam H":

Counterfactual Reasoning for Fair Clinical Risk Prediction

Jul 14, 2019
Stephen Pfohl, Tony Duan, Daisy Yi Ding, Nigam H. Shah

The use of machine learning systems to support decision making in healthcare raises questions as to what extent these systems may introduce or exacerbate disparities in care for historically underrepresented and mistreated groups, due to biases implicitly embedded in observational data in electronic health records. To address this problem in the context of clinical risk prediction models, we develop an augmented counterfactual fairness criteria to extend the group fairness criteria of equalized odds to an individual level. We do so by requiring that the same prediction be made for a patient, and a counterfactual patient resulting from changing a sensitive attribute, if the factual and counterfactual outcomes do not differ. We investigate the extent to which the augmented counterfactual fairness criteria may be applied to develop fair models for prolonged inpatient length of stay and mortality with observational electronic health records data. As the fairness criteria is ill-defined without knowledge of the data generating process, we use a variational autoencoder to perform counterfactual inference in the context of an assumed causal graph. While our technique provides a means to trade off maintenance of fairness with reduction in predictive performance in the context of a learned generative model, further work is needed to assess the generality of this approach.

* Machine Learning for Healthcare 2019 

  Access Model/Code and Paper
Countdown Regression: Sharp and Calibrated Survival Predictions

Jun 21, 2018
Anand Avati, Tony Duan, Kenneth Jung, Nigam H. Shah, Andrew Ng

Personalized probabilistic forecasts of time to event (such as mortality) can be crucial in decision making, especially in the clinical setting. Inspired by ideas from the meteorology literature, we approach this problem through the paradigm of maximizing sharpness of prediction distributions, subject to calibration. In regression problems, it has been shown that optimizing the continuous ranked probability score (CRPS) instead of maximum likelihood leads to sharper prediction distributions while maintaining calibration. We introduce the Survival-CRPS, a generalization of the CRPS to the time to event setting, and present right-censored and interval-censored variants. To holistically evaluate the quality of predicted distributions over time to event, we present the Survival-AUPRC evaluation metric, an analog to area under the precision-recall curve. We apply these ideas by building a recurrent neural network for mortality prediction, using an Electronic Health Record dataset covering millions of patients. We demonstrate significant benefits in models trained by the Survival-CRPS objective instead of maximum likelihood.

  Access Model/Code and Paper
Creating Fair Models of Atherosclerotic Cardiovascular Disease Risk

Sep 16, 2018
Stephen Pfohl, Ben Marafino, Adrien Coulet, Fatima Rodriguez, Latha Palaniappan, Nigam H. Shah

Guidelines for the management of atherosclerotic cardiovascular disease (ASCVD) recommend the use of risk stratification models to identify patients most likely to benefit from cholesterol-lowering and other therapies. These models have differential performance across race and gender groups with inconsistent behavior across studies, potentially resulting in an inequitable distribution of beneficial therapy. In this work, we leverage adversarial learning and a large observational cohort extracted from electronic health records (EHRs) to develop a "fair" ASCVD risk prediction model with reduced variability in error rates across groups. We empirically demonstrate that our approach is capable of aligning the distribution of risk predictions conditioned on the outcome across several groups simultaneously for models built from high-dimensional EHR data. We also discuss the relevance of these results in the context of the empirical trade-off between fairness and model performance.

  Access Model/Code and Paper
Improving Palliative Care with Deep Learning

Nov 17, 2017
Anand Avati, Kenneth Jung, Stephanie Harman, Lance Downing, Andrew Ng, Nigam H. Shah

Improving the quality of end-of-life care for hospitalized patients is a priority for healthcare organizations. Studies have shown that physicians tend to over-estimate prognoses, which in combination with treatment inertia results in a mismatch between patients wishes and actual care at the end of life. We describe a method to address this problem using Deep Learning and Electronic Health Record (EHR) data, which is currently being piloted, with Institutional Review Board approval, at an academic medical center. The EHR data of admitted patients are automatically evaluated by an algorithm, which brings patients who are likely to benefit from palliative care services to the attention of the Palliative Care team. The algorithm is a Deep Neural Network trained on the EHR data from previous years, to predict all-cause 3-12 month mortality of patients as a proxy for patients that could benefit from palliative care. Our predictions enable the Palliative Care team to take a proactive approach in reaching out to such patients, rather than relying on referrals from treating physicians, or conduct time consuming chart reviews of all patients. We also present a novel interpretation technique which we use to provide explanations of the model's predictions.

* IEEE International Conference on Bioinformatics and Biomedicine 2017 

  Access Model/Code and Paper
Language Models Are An Effective Patient Representation Learning Technique For Electronic Health Record Data

Jan 06, 2020
Ethan Steinberg, Ken Jung, Jason A. Fries, Conor K. Corbin, Stephen R. Pfohl, Nigam H. Shah

Widespread adoption of electronic health records (EHRs) has fueled development of clinical outcome models using machine learning. However, patient EHR data are complex, and how to optimally represent them is an open question. This complexity, along with often small training set sizes available to train these clinical outcome models, are two core challenges for training high quality models. In this paper, we demonstrate that learning generic representations from the data of all the patients in the EHR enables better performing prediction models for clinical outcomes, allowing for these challenges to be overcome. We adapt common representation learning techniques used in other domains and find that representations inspired by language models enable a 3.5% mean improvement in AUROC on five clinical outcomes compared to standard baselines, with the average improvement rising to 19% when only a small number of patients are available for training a prediction model for a given clinical outcome.

  Access Model/Code and Paper
The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data

Oct 04, 2018
Daisy Yi Ding, Chloé Simpson, Stephen Pfohl, Dave C. Kale, Kenneth Jung, Nigam H. Shah

Electronic phenotyping is the task of ascertaining whether an individual has a medical condition of interest by analyzing their medical record and is foundational in clinical informatics. Increasingly, electronic phenotyping is performed via supervised learning. We investigate the effectiveness of multitask learning for phenotyping using electronic health records (EHR) data. Multitask learning aims to improve model performance on a target task by jointly learning additional auxiliary tasks and has been used in disparate areas of machine learning. However, its utility when applied to EHR data has not been established, and prior work suggests that its benefits are inconsistent. We present experiments that elucidate when multitask learning with neural nets improves performance for phenotyping using EHR data relative to neural nets trained for a single phenotype and to well-tuned logistic regression baselines. We find that multitask neural nets consistently outperform single-task neural nets for rare phenotypes but underperform for relatively more common phenotypes. The effect size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify phenotype complexity and find that neural nets trained with or without multitask learning do not improve on simple baselines unless the phenotypes are sufficiently complex.

* Pacific Symposium on Biocomputing (PSB) 2019, Hawaii,; 13 pages, 7 figures; updated with the camera-ready version of the manuscript 

  Access Model/Code and Paper
Some methods for heterogeneous treatment effect estimation in high-dimensions

Jul 01, 2017
Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H. Shah, Trevor Hastie, Robert Tibshirani

When devising a course of treatment for a patient, doctors often have little quantitative evidence on which to base their decisions, beyond their medical education and published clinical trials. Stanford Health Care alone has millions of electronic medical records (EMRs) that are only just recently being leveraged to inform better treatment recommendations. These data present a unique challenge because they are high-dimensional and observational. Our goal is to make personalized treatment recommendations based on the outcomes for past patients similar to a new patient. We propose and analyze three methods for estimating heterogeneous treatment effects using observational data. Our methods perform well in simulations using a wide variety of treatment effect functions, and we present results of applying the two most promising methods to data from The SPRINT Data Analysis Challenge, from a large randomized trial of a treatment for high blood pressure.

  Access Model/Code and Paper
Medical device surveillance with electronic health records

Apr 03, 2019
Alison Callahan, Jason A Fries, Christopher Ré, James I Huddleston III, Nicholas J Giori, Scott Delp, Nigam H Shah

Post-market medical device surveillance is a challenge facing manufacturers, regulatory agencies, and health care providers. Electronic health records are valuable sources of real world evidence to assess device safety and track device-related patient outcomes over time. However, distilling this evidence remains challenging, as information is fractured across clinical notes and structured records. Modern machine learning methods for machine reading promise to unlock increasingly complex information from text, but face barriers due to their reliance on large and expensive hand-labeled training sets. To address these challenges, we developed and validated state-of-the-art deep learning methods that identify patient outcomes from clinical notes without requiring hand-labeled training data. Using hip replacements as a test case, our methods accurately extracted implant details and reports of complications and pain from electronic health records with up to 96.3% precision, 98.5% recall, and 97.4% F1, improved classification performance by 12.7- 53.0% over rule-based methods, and detected over 6 times as many complication events compared to using structured data alone. Using these events to assess complication-free survivorship of different implant systems, we found significant variation between implants, including for risk of revision surgery, which could not be detected using coded data alone. Patients with revision surgeries had more hip pain mentions in the post-hip replacement, pre-revision period compared to patients with no evidence of revision surgery (mean hip pain mentions 4.97 vs. 3.23; t = 5.14; p < 0.001). Some implant models were associated with higher or lower rates of hip pain mentions. Our methods complement existing surveillance mechanisms by requiring orders of magnitude less hand-labeled training data, offering a scalable solution for national medical device surveillance.

  Access Model/Code and Paper
A Semi-Supervised Machine Learning Approach to Detecting Recurrent Metastatic Breast Cancer Cases Using Linked Cancer Registry and Electronic Medical Record Data

Jan 17, 2019
Albee Y. Ling, Allison W. Kurian, Jennifer L. Caswell-Jin, George W. Sledge Jr., Nigam H. Shah, Suzanne R. Tamang

Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergistically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.

  Access Model/Code and Paper
Predicting Inpatient Discharge Prioritization With Electronic Health Records

Dec 02, 2018
Anand Avati, Stephen Pfohl, Chris Lin, Thao Nguyen, Meng Zhang, Philip Hwang, Jessica Wetstone, Kenneth Jung, Andrew Ng, Nigam H. Shah

Identifying patients who will be discharged within 24 hours can improve hospital resource management and quality of care. We studied this problem using eight years of Electronic Health Records (EHR) data from Stanford Hospital. We fit models to predict 24 hour discharge across the entire inpatient population. The best performing models achieved an area under the receiver-operator characteristic curve (AUROC) of 0.85 and an AUPRC of 0.53 on a held out test set. This model was also well calibrated. Finally, we analyzed the utility of this model in a decision theoretic framework to identify regions of ROC space in which using the model increases expected utility compared to the trivial always negative or always positive classifiers.

  Access Model/Code and Paper
Scalable and accurate deep learning for electronic health records

May 11, 2018
Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Peter J. Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michaela Hardt, Jamie Irvine, Quoc Le, Kurt Litsch, Jake Marcus, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael Howell, Claire Cui, Greg Corrado, Jeff Dean

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two U.S. academic medical centers with 216,221 adult patients hospitalized for at least 24 hours. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting in-hospital mortality (AUROC across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed state-of-the-art traditional predictive models in all cases. We also present a case-study of a neural-network attribution system, which illustrates how clinicians can gain some transparency into the predictions. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios, complete with explanations that directly highlight evidence in the patient's chart.

* npj Digital Medicine 1:18 (2018) 
* Published version from 

  Access Model/Code and Paper
Exploring Automated Essay Scoring for Nonnative English Speakers

Sep 29, 2017
Amber Nigam

Automated Essay Scoring (AES) has been quite popular and is being widely used. However, lack of appropriate methodology for rating nonnative English speakers' essays has meant a lopsided advancement in this field. In this paper, we report initial results of our experiments with nonnative AES that learns from manual evaluation of nonnative essays. For this purpose, we conducted an exercise in which essays written by nonnative English speakers in test environment were rated both manually and by the automated system designed for the experiment. In the process, we experimented with a few features to learn about nuances linked to nonnative evaluation. The proposed methodology of automated essay evaluation has yielded a correlation coefficient of 0.750 with the manual evaluation.

* Accepted for publication at EUROPHRAS 2017 

  Access Model/Code and Paper
PoshakNet: Framework for matching dresses from real-life photos using GAN and Siamese Network

Nov 11, 2019
Abhigyan Khaund, Daksh Thapar, Aditya Nigam

Online garment shopping has gained many customers in recent years. Describing a dress using keywords does not always yield the proper results, which in turn leads to dissatisfaction of customers. A visual search based system will be enormously beneficent to the industry. Hence, we propose a framework that can retrieve similar clothes that can be found in an image. The first task is to extract the garment from the input image (street photo). There are various challenges for that, including pose, illumination, and background clutter. We use a Generative Adversarial Network for the task of retrieving the garment that the person in the image was wearing. It has been shown that GAN can retrieve the garment very efficiently despite the challenges of street photos. Finally, a siamese based matching system takes the retrieved cloth image and matches it with the clothes in the dataset, giving us the top k matches. We take a pre-trained inception-ResNet v1 module as a siamese network (trained using triplet loss for face detection) and fine-tune it on the shopping dataset using center loss. The dataset has been collected inhouse. For training the GAN, we use the LookBook dataset, which is publically available.

* Accepted in NCVPRIPG 2019 

  Access Model/Code and Paper
CMB-GAN: Fast Simulations of Cosmic Microwave background anisotropy maps using Deep Learning

Aug 11, 2019
Amit Mishra, Pranath Reddy, Rahul Nigam

Cosmic Microwave Background (CMB) has been a cornerstone in many cosmology experiments and studies since it was discovered back in 1964. Traditional computational models like CAMB that are used for generating CMB anisotropy maps are extremely resource intensive and act as a bottleneck in cosmology experiments that require a large amount of CMB data for analysis. In this paper, we present a new approach to the generation of CMB anisotropy maps using a machine learning technique called Generative Adversarial Network (GAN). We train our deep generative model to learn the complex distribution of CMB maps and efficiently generate new sets of CMB data in the form of 2D patches of anisotropy maps. We limit our experiment to the generation of 56{\deg} and 112{\deg} patches of CMB maps. We have also trained a Multilayer perceptron model for estimation of baryon density from a CMB map, we will be using this model for the performance evaluation of our generative model using diagnostic measures like Histogram of pixel intensities, the standard deviation of pixel intensity distribution, Power Spectrum, Cross power spectrum, Correlation matrix of the power spectrum and Peak count.

* 8 pages, cosmic microwave background radiation, deep learning, generative adversarial network. arXiv admin note: substantial text overlap with arXiv:1903.12253 

  Access Model/Code and Paper
FKIMNet: A Finger Dorsal Image Matching Network Comparing Component (Major, Minor and Nail) Matching with Holistic (Finger Dorsal) Matching

Apr 02, 2019
Daksh Thapar, Gaurav Jaswal, Aditya Nigam

Current finger knuckle image recognition systems, often require users to place fingers' major or minor joints flatly towards the capturing sensor. To extend these systems for user non-intrusive application scenarios, such as consumer electronics, forensic, defence etc, we suggest matching the full dorsal fingers, rather than the major/ minor region of interest (ROI) alone. In particular, this paper makes a comprehensive study on the comparisons between full finger and fusion of finger ROI's for finger knuckle image recognition. These experiments suggest that using full-finger, provides a more elegant solution. Addressing the finger matching problem, we propose a CNN (convolutional neural network) which creates a $128$-D feature embedding of an image. It is trained via. triplet loss function, which enforces the L2 distance between the embeddings of the same subject to be approaching zero, whereas the distance between any 2 embeddings of different subjects to be at least a margin. For precise training of the network, we use dynamic adaptive margin, data augmentation, and hard negative mining. In distinguished experiments, the individual performance of finger, as well as weighted sum score level fusion of major knuckle, minor knuckle, and nail modalities have been computed, justifying our assumption to consider full finger as biometrics instead of its counterparts. The proposed method is evaluated using two publicly available finger knuckle image datasets i.e., PolyU FKP dataset and PolyU Contactless FKI Datasets.

* Accepted in IJCNN 2019 

  Access Model/Code and Paper
Intent Detection and Slots Prompt in a Closed-Domain Chatbot

Jan 10, 2019
Amber Nigam, Prashik Sahare, Kushagra Pandya

In this paper, we introduce a methodology for predicting intent and slots of a query for a chatbot that answers career-related queries. We take a multi-staged approach where both the processes (intent-classification and slot-tagging) inform each other's decision-making in different stages. The model breaks down the problem into stages, solving one problem at a time and passing on relevant results of the current stage to the next, thereby reducing search space for subsequent stages, and eventually making classification and tagging more viable after each stage. We also observe that relaxing rules for a fuzzy entity-matching in slot-tagging after each stage (by maintaining a separate Named Entity Tagger per stage) helps us improve performance, although at a slight cost of false-positives. Our model has achieved state-of-the-art performance with F1-score of 77.63% for intent-classification and 82.24% for slot-tagging on our dataset that we would publicly release along with the paper.

* Accepted paper for IEEE ICSC 2019 (4 pages, 1 figure, 6 tables) 

  Access Model/Code and Paper
FDSNet: Finger dorsal image spoof detection network using light field camera

Dec 18, 2018
Avantika Singh, Gaurav Jaswal, Aditya Nigam

At present spoofing attacks via which biometric system is potentially vulnerable against a fake biometric characteristic, introduces a great challenge to recognition performance. Despite the availability of a broad range of presentation attack detection (PAD) or liveness detection algorithms, fingerprint sensors are vulnerable to spoofing via fake fingers. In such situations, finger dorsal images can be thought of as an alternative which can be captured without much user cooperation and are more appropriate for outdoor security applications. In this paper, we present a first feasibility study of spoofing attack scenarios on finger dorsal authentication system, which include four types of presentation attacks such as printed paper, wrapped printed paper, scan and mobile. This study also presents a CNN based spoofing attack detection method which employ state-of-the-art deep learning techniques along with transfer learning mechanism. We have collected 196 finger dorsal real images from 33 subjects, captured with a Lytro camera and also created a set of 784 finger dorsal spoofing images. Extensive experimental results have been performed that demonstrates the superiority of the proposed approach for various spoofing attacks.

  Access Model/Code and Paper
Role of Intonation in Scoring Spoken English

Aug 23, 2018
Amber Nigam, Ishan Sodhi, Tuhinanksu Das

In this paper, we have introduced and evaluated intonation based feature for scoring the English speech of nonnative English speakers in Indian context. For this, we created an automated spoken English scoring engine to learn from the manual evaluation of spoken English. This involved using an existing Automatic Speech Recognition (ASR) engine to convert the speech to text. Thereafter, macro features like accuracy, fluency and prosodic features were used to build a scoring model. In the process, we introduced SimIntonation, short for similarity between spoken intonation pattern and "ideal" i.e. training intonation pattern. Our results show that it is a highly predictive feature under controlled environment. We also categorized interword pauses into 4 distinct types for a granular evaluation of pauses and their impact on speech evaluation. Moreover, we took steps to moderate test difficulty through its evaluation across parameters like difficult word count, average sentence readability and lexical density. Our results show that macro features like accuracy and intonation, and micro features like pause-topography are strongly predictive. The scoring of spoken English is not within the purview of this paper.

  Access Model/Code and Paper
Polarity detection movie reviews in hindi language

Sep 13, 2014
Richa Sharma, Shweta Nigam, Rekha Jain

Nowadays peoples are actively involved in giving comments and reviews on social networking websites and other websites like shopping websites, news websites etc. large number of people everyday share their opinion on the web, results is a large number of user data is collected .users also find it trivial task to read all the reviews and then reached into the decision. It would be better if these reviews are classified into some category so that the user finds it easier to read. Opinion Mining or Sentiment Analysis is a natural language processing task that mines information from various text forms such as reviews, news, and blogs and classify them on the basis of their polarity as positive, negative or neutral. But, from the last few years, user content in Hindi language is also increasing at a rapid rate on the Web. So it is very important to perform opinion mining in Hindi language as well. In this paper a Hindi language opinion mining system is proposed. The system classifies the reviews as positive, negative and neutral for Hindi language. Negation is also handled in the proposed system. Experimental results using reviews of movies show the effectiveness of the system

  Access Model/Code and Paper
Opinion mining of movie reviews at document level

Aug 17, 2014
Richa Sharma, Shweta Nigam, Rekha Jain

The whole world is changed rapidly and using the current technologies Internet becomes an essential need for everyone. Web is used in every field. Most of the people use web for a common purpose like online shopping, chatting etc. During an online shopping large number of reviews/opinions are given by the users that reflect whether the product is good or bad. These reviews need to be explored, analyse and organized for better decision making. Opinion Mining is a natural language processing task that deals with finding orientation of opinion in a piece of text with respect to a topic. In this paper a document based opinion mining system is proposed that classify the documents as positive, negative and neutral. Negation is also handled in the proposed system. Experimental results using reviews of movies show the effectiveness of the system.

* International Journal on Information Theory (IJIT), Vol.3, No.3, July 2014 

  Access Model/Code and Paper