Models, code, and papers for "Sanja L":

Internal-transfer Weighting of Multi-task Learning for Lung Cancer Detection

Dec 16, 2019
Yiyuan Yang, Riqiang Gao, Yucheng Tang, Sanja L. Antic, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman

Recently, multi-task networks have shown to both offer additional estimation capabilities, and, perhaps more importantly, increased performance over single-task networks on a "main/primary" task. However, balancing the optimization criteria of multi-task networks across different tasks is an area of active exploration. Here, we extend a previously proposed 3D attention-based network with four additional multi-task subnetworks for the detection of lung cancer and four auxiliary tasks (diagnosis of asthma, chronic bronchitis, chronic obstructive pulmonary disease, and emphysema). We introduce and evaluate a learning policy, Periodic Focusing Learning Policy (PFLP), that alternates the dominance of tasks throughout the training. To improve performance on the primary task, we propose an Internal-Transfer Weighting (ITW) strategy to suppress the loss functions on auxiliary tasks for the final stages of training. To evaluate this approach, we examined 3386 patients (single scan per patient) from the National Lung Screening Trial (NLST) and de-identified data from the Vanderbilt Lung Screening Program, with a 2517/277/592 (scans) split for training, validation, and testing. Baseline networks include a single-task strategy and a multi-task strategy without adaptive weights (PFLP/ITW), while primary experiments are multi-task trials with either PFLP or ITW or both. On the test set for lung cancer prediction, the baseline single-task network achieved prediction AUC of 0.8080 and the multi-task baseline failed to converge (AUC 0.6720). However, applying PFLP helped multi-task network clarify and achieved test set lung cancer prediction AUC of 0.8402. Furthermore, our ITW technique boosted the PFLP enabled multi-task network and achieved an AUC of 0.8462 (McNemar test, p < 0.01).

* Accepted by Medical Imaging, SPIE2020 

  Click for Model/Code and Paper
Deep Multi-task Prediction of Lung Cancer and Cancer-free Progression from Censored Heterogenous Clinical Imaging

Nov 12, 2019
Riqiang Gao, Lingfeng Li, Yucheng Tang, Sanja L. Antic, Alexis B. Paulson, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman

Annual low dose computed tomography (CT) lung screening is currently advised for individuals at high risk of lung cancer (e.g., heavy smokers between 55 and 80 years old). The recommended screening practice significantly reduces all-cause mortality, but the vast majority of screening results are negative for cancer. If patients at very low risk could be identified based on individualized, image-based biomarkers, the health care resources could be more efficiently allocated to higher risk patients and reduce overall exposure to ionizing radiation. In this work, we propose a multi-task (diagnosis and prognosis) deep convolutional neural network to improve the diagnostic accuracy over a baseline model while simultaneously estimating a personalized cancer-free progression time (CFPT). A novel Censored Regression Loss (CRL) is proposed to perform weakly supervised regression so that even single negative screening scans can provide small incremental value. Herein, we study 2287 scans from 1433 de-identified patients from the Vanderbilt Lung Screening Program (VLSP) and Molecular Characterization Laboratories (MCL) cohorts. Using five-fold cross-validation, we train a 3D attention-based network under two scenarios: (1) single-task learning with only classification, and (2) multi-task learning with both classification and regression. The single-task learning leads to a higher AUC compared with the Kaggle challenge winner pre-trained model (0.878 v. 0.856), and multi-task learning significantly improves the single-task one (AUC 0.895, p<0.01, McNemar test). In summary, the image-based predicted CFPT can be used in follow-up year lung cancer prediction and data assessment.

* 8 pages, 5 figures, SPIE 2020 Medical Imaging, oral presentation 

  Click for Model/Code and Paper
Lung Cancer Detection using Co-learning from Chest CT Images and Clinical Demographics

Feb 21, 2019
Jiachen Wang, Riqiang Gao, Yuankai Huo, Shunxing Bao, Yunxi Xiong, Sanja L. Antic, Travis J. Osterman, Pierre P. Massion, Bennett A. Landman

Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.

* SPIE Medical Image, oral presentation 

  Click for Model/Code and Paper
Distanced LSTM: Time-Distanced Gates in Long Short-Term Memory Models for Lung Cancer Detection

Sep 11, 2019
Riqiang Gao, Yuankai Huo, Shunxing Bao, Yucheng Tang, Sanja L. Antic, Emily S. Epstein, Aneri B. Balar, Steve Deppen, Alexis B. Paulson, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman

The field of lung nodule detection and cancer prediction has been rapidly developing with the support of large public data archives. Previous studies have largely focused on cross-sectional (single) CT data. Herein, we consider longitudinal data. The Long Short-Term Memory (LSTM) model addresses learning with regularly spaced time points (i.e., equal temporal intervals). However, clinical imaging follows patient needs with often heterogeneous, irregular acquisitions. To model both regular and irregular longitudinal samples, we generalize the LSTM model with the Distanced LSTM (DLSTM) for temporally varied acquisitions. The DLSTM includes a Temporal Emphasis Model (TEM) that enables learning across regularly and irregularly sampled intervals. Briefly, (1) the time intervals between longitudinal scans are modeled explicitly, (2) temporally adjustable forget and input gates are introduced for irregular temporal sampling; and (3) the latest longitudinal scan has an additional emphasis term. We evaluate the DLSTM framework in three datasets including simulated data, 1794 National Lung Screening Trial (NLST) scans, and 1420 clinically acquired data with heterogeneous and irregular temporal accession. The experiments on the first two datasets demonstrate that our method achieves competitive performance on both simulated and regularly sampled datasets (e.g. improve LSTM from 0.6785 to 0.7085 on F1 score in NLST). In external validation of clinically and irregularly acquired data, the benchmarks achieved 0.8350 (CNN feature) and 0.8380 (LSTM) on the area under the ROC curve (AUC) score, while the proposed DLSTM achieves 0.8905.

* This paper is accepted by MLMI (oral), MICCAI workshop 

  Click for Model/Code and Paper
Teaching Machines to Describe Images via Natural Language Feedback

Jun 05, 2017
Huan Ling, Sanja Fidler

Robots will eventually be part of every household. It is thus critical to enable algorithms to learn from and be guided by non-expert users. In this paper, we bring a human in the loop, and enable a human teacher to give feedback to a learning agent in the form of natural language. We argue that a descriptive sentence can provide a much stronger learning signal than a numeric reward in that it can easily point to where the mistakes are and how to correct them. We focus on the problem of image captioning in which the quality of the output can easily be judged by non-experts. We propose a hierarchical phrase-based captioning model trained with policy gradients, and design a feedback network that provides reward to the learner by conditioning on the human-provided feedback. We show that by exploiting descriptive feedback our model learns to perform better than when given independently written human captions.

* 13 pages 

  Click for Model/Code and Paper
Bingham Procrustean Alignment for Object Detection in Clutter

Apr 27, 2013
Jared Glover, Sanja Popovic

A new system for object detection in cluttered RGB-D images is presented. Our main contribution is a new method called Bingham Procrustean Alignment (BPA) to align models with the scene. BPA uses point correspondences between oriented features to derive a probability distribution over possible model poses. The orientation component of this distribution, conditioned on the position, is shown to be a Bingham distribution. This result also applies to the classic problem of least-squares alignment of point sets, when point features are orientation-less, and gives a principled, probabilistic way to measure pose uncertainty in the rigid alignment problem. Our detection system leverages BPA to achieve more reliable object detections in clutter.

* Submitted to IROS 2013 

  Click for Model/Code and Paper
Improved Concentration Bounds for Conditional Value-at-Risk and Cumulative Prospect Theory using Wasserstein distance

Feb 27, 2019
Sanjay P. Bhat, Prashanth L. A

Known finite-sample concentration bounds for the Wasserstein distance between the empirical and true distribution of a random variable are used to derive a two-sided concentration bound for the error between the true conditional value-at-risk (CVaR) of a (possibly unbounded) random variable and a standard estimate of its CVaR computed from an i.i.d. sample. The bound applies under fairly general assumptions on the random variable, and improves upon previous bounds which were either one sided, or applied only to bounded random variables. Specializations of the bound to sub-Gaussian and sub-exponential random variables are also derived. A similar procedure is followed to derive concentration bounds for the error between the true and estimated Cumulative Prospect Theory (CPT) value of a random variable, in cases where the random variable is bounded or sub-Gaussian. These bounds are shown to match a known bound in the bounded case, and improve upon the known bound in the sub-Gaussian case. The usefulness of the bounds is illustrated through an algorithm, and corresponding regret bound for a stochastic bandit problem, where the underlying risk measure to be optimized is CVaR.

  Click for Model/Code and Paper
Improving Local Search for Fuzzy Scheduling Problems

Sep 03, 2008
Martin Josef Geiger, Sanja Petrovic

The integration of fuzzy set theory and fuzzy logic into scheduling is a rather new aspect with growing importance for manufacturing applications, resulting in various unsolved aspects. In the current paper, we investigate an improved local search technique for fuzzy scheduling problems with fitness plateaus, using a multi criteria formulation of the problem. We especially address the problem of changing job priorities over time as studied at the Sherwood Press Ltd, a Nottingham based printing company, who is a collaborator on the project.

* Proceedings of the Post Graduate Research Conference in Electronics, Photonics, Communications & Networks and Computing Science PREP 2004, University of Hertfordshire, Great Britain, pp. 146-147 

  Click for Model/Code and Paper
Neural Data Server: A Large-Scale Search Engine for Transfer Learning Data

Jan 09, 2020
Xi Yan, David Acuna, Sanja Fidler

Transfer learning has proven to be a successful technique to train deep learning models in the domains where little training data is available. The dominant approach is to pretrain a model on a large generic dataset such as ImageNet and finetune its weights on the target domain. However, in the new era of an ever-increasing number of massive datasets, selecting the relevant data for pretraining is a critical issue. We introduce Neural Data Server (NDS), a large-scale search engine for finding the most useful transfer learning data to the target domain. Our NDS consists of a dataserver which indexes several large popular image datasets, and aims to recommend data to a client, an end-user with a target application with its own small labeled dataset. As in any search engine that serves information to possibly numerous users, we want the online computation performed by the dataserver to be minimal. The dataserver represents large datasets with a much more compact mixture-of experts model, and employs it to perform data search in a series of dataserver-client transactions at a low computational cost. We show the effectiveness of NDS in various transfer learning scenarios, demonstrating state-of-the-art performance on several target datasets and tasks such as image classification, object detection and instance segmentation. Our Neural Data Server is available as a web-service at, recommending data to users with the aim to improve performance of their A.I. application.

  Click for Model/Code and Paper
A Theoretical Analysis of the Number of Shots in Few-Shot Learning

Sep 25, 2019
Tianshi Cao, Marc Law, Sanja Fidler

Few-shot classification is the task of predicting the category of an example from a set of few labeled examples. The number of labeled examples per category is called the number of shots (or shot number). Recent works tackle this task through meta-learning, where a meta-learner extracts information from observed tasks during meta-training to quickly adapt to new tasks during meta-testing. In this formulation, the number of shots exploited during meta-training has an impact on the recognition performance at meta-test time. Generally, the shot number used in meta-training should match the one used in meta-testing to obtain the best performance. We introduce a theoretical analysis of the impact of the shot number on Prototypical Networks, a state-of-the-art few-shot classification method. From our analysis, we propose a simple method that is robust to the choice of shot number used during meta-training, which is a crucial hyperparameter. The performance of our model trained for an arbitrary meta-training shot number shows great performance for different values of meta-testing shot numbers. We experimentally demonstrate our approach on different few-shot classification benchmarks.

* 15 pages incl. appendix, 6 figures 

  Click for Model/Code and Paper
Devil is in the Edges: Learning Semantic Boundaries from Noisy Annotations

Apr 16, 2019
David Acuna, Amlan Kar, Sanja Fidler

We tackle the problem of semantic boundary prediction, which aims to identify pixels that belong to object(class) boundaries. We notice that relevant datasets consist of a significant level of label noise, reflecting the fact that precise annotations are laborious to get and thus annotators trade-off quality with efficiency. We aim to learn sharp and precise semantic boundaries by explicitly reasoning about annotation noise during training. We propose a simple new layer and loss that can be used with existing learning-based boundary detectors. Our layer/loss enforces the detector to predict a maximum response along the normal direction at an edge, while also regularizing its direction. We further reason about true object boundaries during training using a level set formulation, which allows the network to learn from misaligned labels in an end-to-end fashion. Experiments show that we improve over the CASENet backbone network by more than 4% in terms of MF(ODS) and 18.61% in terms of AP, outperforming all current state-of-the-art methods including those that deal with alignment. Furthermore, we show that our learned network can be used to significantly improve coarse segmentation labels, lending itself as an efficient way to label new data.

* CVPR 2019 
* Accepted as a CVPR 2019 oral paper (Project Page: 

  Click for Model/Code and Paper
Action Recognition from Single Timestamp Supervision in Untrimmed Videos

Apr 09, 2019
Davide Moltisanti, Sanja Fidler, Dima Damen

Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak video-level supervision has been successfully exploited for recognition in untrimmed videos, however it is challenged when the number of different actions in training videos increases. We propose a method that is supervised by single timestamps located around each action instance, in untrimmed videos. We replace expensive action bounds with sampling distributions initialised from these timestamps. We then use the classifier's response to iteratively update the sampling distributions. We demonstrate that these distributions converge to the location and extent of discriminative action segments. We evaluate our method on three datasets for fine-grained recognition, with increasing number of different actions per video, and show that single timestamps offer a reasonable compromise between recognition performance and labelling effort, performing comparably to full temporal supervision. Our update method improves top-1 test accuracy by up to 5.4%. across the evaluated datasets.

* CVPR 2019 

  Click for Model/Code and Paper
A Face-to-Face Neural Conversation Model

Dec 04, 2018
Hang Chu, Daiqing Li, Sanja Fidler

Neural networks have recently become good at engaging in dialog. However, current approaches are based solely on verbal text, lacking the richness of a real face-to-face conversation. We propose a neural conversation model that aims to read and generate facial gestures alongside with text. This allows our model to adapt its response based on the "mood" of the conversation. In particular, we introduce an RNN encoder-decoder that exploits the movement of facial muscles, as well as the verbal conversation. The decoder consists of two layers, where the lower layer aims at generating the verbal response and coarse facial expressions, while the second layer fills in the subtle gestures, making the generated output more smooth and natural. We train our neural network by having it "watch" 250 movies. We showcase our joint face-text model in generating more natural conversations through automatic metrics and a human study. We demonstrate an example application with a face-to-face chatting avatar.

* CVPR (2018) 7113-7121 
* Published at CVPR 2018 

  Click for Model/Code and Paper
Lifelong Learning for Image Captioning by Asking Natural Language Questions

Dec 01, 2018
Kevin Shen, Amlan Kar, Sanja Fidler

In order to bring artificial agents into our lives, we will need to go beyond supervised learning on closed datasets to having the ability to continuously expand knowledge. Inspired by a student learning in a classroom, we present an agent that can continuously learn by posing natural language questions to humans. Our agent is composed of three interacting modules, one that performs captioning, another that generates questions and a decision maker that learns when to ask questions by implicitly reasoning about the uncertainty of the agent and expertise of the teacher. As compared to current active learning methods which query images for full captions, our agent is able to ask pointed questions to improve the generated captions. The agent trains on the improved captions, expanding its knowledge. We show that our approach achieves better performance using less human supervision than the baselines on the challenging MSCOCO dataset.

  Click for Model/Code and Paper
A Neural Compositional Paradigm for Image Captioning

Oct 23, 2018
Bo Dai, Sanja Fidler, Dahua Lin

Mainstream captioning models often follow a sequential structure to generate captions, leading to issues such as introduction of irrelevant semantics, lack of diversity in the generated captions, and inadequate generalization performance. In this paper, we present an alternative paradigm for image captioning, which factorizes the captioning procedure into two stages: (1) extracting an explicit semantic representation from the given image; and (2) constructing the caption based on a recursive compositional procedure in a bottom-up manner. Compared to conventional ones, our paradigm better preserves the semantic content through an explicit factorization of semantics and syntax. By using the compositional generation procedure, caption construction follows a recursive structure, which naturally fits the properties of human language. Moreover, the proposed compositional procedure requires less data to train, generalizes better, and yields more diverse captions.

* 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montr\'eal, Canada 

  Click for Model/Code and Paper
Pose Estimation for Objects with Rotational Symmetry

Oct 13, 2018
Enric Corona, Kaustav Kundu, Sanja Fidler

Pose estimation is a widely explored problem, enabling many robotic tasks such as grasping and manipulation. In this paper, we tackle the problem of pose estimation for objects that exhibit rotational symmetry, which are common in man-made and industrial environments. In particular, our aim is to infer poses for objects not seen at training time, but for which their 3D CAD models are available at test time. Previous work has tackled this problem by learning to compare captured views of real objects with the rendered views of their 3D CAD models, by embedding them in a joint latent space using neural networks. We show that sidestepping the issue of symmetry in this scenario during training leads to poor performance at test time. We propose a model that reasons about rotational symmetry during training by having access to only a small set of symmetry-labeled objects, whereby exploiting a large collection of unlabeled CAD models. We demonstrate that our approach significantly outperforms a naively trained neural network on a new pose dataset containing images of tools and hardware.

* Accepted at IROS 2018. More details available at 

  Click for Model/Code and Paper
Song From PI: A Musically Plausible Network for Pop Music Generation

Nov 10, 2016
Hang Chu, Raquel Urtasun, Sanja Fidler

We present a novel framework for generating pop music. Our model is a hierarchical Recurrent Neural Network, where the layers and the structure of the hierarchy encode our prior knowledge about how pop music is composed. In particular, the bottom layers generate the melody, while the higher levels produce the drums and chords. We conduct several human studies that show strong preference of our generated music over that produced by the recent method by Google. We additionally show two applications of our framework: neural dancing and karaoke, as well as neural story singing.

* under review at ICLR 2017 

  Click for Model/Code and Paper
Instance-Level Segmentation for Autonomous Driving with Deep Densely Connected MRFs

Apr 27, 2016
Ziyu Zhang, Sanja Fidler, Raquel Urtasun

Our aim is to provide a pixel-wise instance-level labeling of a monocular image in the context of autonomous driving. We build on recent work [Zhang et al., ICCV15] that trained a convolutional neural net to predict instance labeling in local image patches, extracted exhaustively in a stride from an image. A simple Markov random field model using several heuristics was then proposed in [Zhang et al., ICCV15] to derive a globally consistent instance labeling of the image. In this paper, we formulate the global labeling problem with a novel densely connected Markov random field and show how to encode various intuitive potentials in a way that is amenable to efficient mean field inference [Kr\"ahenb\"uhl et al., NIPS11]. Our potentials encode the compatibility between the global labeling and the patch-level predictions, contrast-sensitive smoothness as well as the fact that separate regions form different instances. Our experiments on the challenging KITTI benchmark [Geiger et al., CVPR12] demonstrate that our method achieves a significant performance boost over the baseline [Zhang et al., ICCV15].

  Click for Model/Code and Paper
Soccer Field Localization from a Single Image

Apr 10, 2016
Namdar Homayounfar, Sanja Fidler, Raquel Urtasun

In this work, we propose a novel way of efficiently localizing a soccer field from a single broadcast image of the game. Related work in this area relies on manually annotating a few key frames and extending the localization to similar images, or installing fixed specialized cameras in the stadium from which the layout of the field can be obtained. In contrast, we formulate this problem as a branch and bound inference in a Markov random field where an energy function is defined in terms of field cues such as grass, lines and circles. Moreover, our approach is fully automatic and depends only on single images from the broadcast video of the game. We demonstrate the effectiveness of our method by applying it to various games and obtain promising results. Finally, we posit that our approach can be applied easily to other sports such as hockey and basketball.

  Click for Model/Code and Paper
Learning a Hierarchical Compositional Shape Vocabulary for Multi-class Object Representation

Aug 23, 2014
Sanja Fidler, Marko Boben, Ales Leonardis

Hierarchies allow feature sharing between objects at multiple levels of representation, can code exponential variability in a very compact way and enable fast inference. This makes them potentially suitable for learning and recognizing a higher number of object classes. However, the success of the hierarchical approaches so far has been hindered by the use of hand-crafted features or predetermined grouping rules. This paper presents a novel framework for learning a hierarchical compositional shape vocabulary for representing multiple object classes. The approach takes simple contour fragments and learns their frequent spatial configurations. These are recursively combined into increasingly more complex and class-specific shape compositions, each exerting a high degree of shape variability. At the top-level of the vocabulary, the compositions are sufficiently large and complex to represent the whole shapes of the objects. We learn the vocabulary layer after layer, by gradually increasing the size of the window of analysis and reducing the spatial resolution at which the shape configurations are learned. The lower layers are learned jointly on images of all classes, whereas the higher layers of the vocabulary are learned incrementally, by presenting the algorithm with one object class after another. The experimental results show that the learned multi-class object representation scales favorably with the number of object classes and achieves a state-of-the-art detection performance at both, faster inference as well as shorter training times.

  Click for Model/Code and Paper