Models, code, and papers for "Suman Jana":

On Training Robust PDF Malware Classifiers

Apr 06, 2019
Yizheng Chen, Shiqi Wang, Dongdong She, Suman Jana

Although state-of-the-art PDF malware classifiers can be trained with almost perfect test accuracy (99%) and extremely low false positive rate (under 0.1%), it has been shown that even a simple adversary can evade them. A practically useful malware classifier must be robust against evasion attacks. However, achieving such robustness is an extremely challenging task. In this paper, we take the first steps towards training robust PDF malware classifiers with verifiable robustness properties. For instance, a robustness property can enforce that no matter how many pages from benign documents are inserted into a PDF malware, the classifier must still classify it as malicious. We demonstrate how the worst-case behavior of a malware classifier with respect to specific robustness properties can be formally verified. Furthermore, we find that training classifiers that satisfy formally verified robustness properties can increase the computation cost of unbounded (i.e., not bounded by the robustness properties) attackers by eliminating simple evasion attacks. Specifically, we propose a new distance metric that operates on the PDF tree structure and specify two classes of robustness properties including subtree insertions and deletions. We utilize state-of-the-art verifiably robust training method to build robust PDF malware classifiers. Our results show that, we can achieve 99% verified robust accuracy, while maintaining 99.80% accuracy and 0.41% false positive rate. With simple robustness properties, the state-of-the-art unbounded attacker found no successful evasion on the robust classifier in 6 hours. Even for a new unbounded adaptive attacker we have designed, the number of successful evasions within a fixed time budget is cut down by 4x.

  Access Model/Code and Paper
On Pruning Adversarially Robust Neural Networks

Feb 24, 2020
Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

In safety-critical but computationally resource-constrained applications, deep learning faces two key challenges: lack of robustness against adversarial attacks and large neural network size (often millions of parameters). While the research community has extensively explored the use of robust training and network pruning \emph{independently} to address one of these challenges, we show that integrating existing pruning techniques with multiple types of robust training techniques, including verifiably robust training, leads to poor robust accuracy even though such techniques can preserve high regular accuracy. We further demonstrate that making pruning techniques aware of the robust learning objective can lead to a large improvement in performance. We realize this insight by formulating the pruning objective as an empirical risk minimization problem which is then solved using SGD. We demonstrate the success of the proposed pruning technique across CIFAR-10, SVHN, and ImageNet dataset with four different robust training techniques: iterative adversarial training, randomized smoothing, MixTrain, and CROWN-IBP. Specifically, at 99\% connection pruning ratio, we achieve gains up to 3.2, 10.0, and 17.8 percentage points in robust accuracy under state-of-the-art adversarial attacks for ImageNet, CIFAR-10, and SVHN dataset, respectively. Our code and compressed networks are publicly available at

* 19 pages, 14 figures, 8 tables 

  Access Model/Code and Paper
Towards Compact and Robust Deep Neural Networks

Jun 14, 2019
Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana

Deep neural networks have achieved impressive performance in many applications but their large number of parameters lead to significant computational and storage overheads. Several recent works attempt to mitigate these overheads by designing compact networks using pruning of connections. However, we observe that most of the existing strategies to design compact networks fail to preserve network robustness against adversarial examples. In this work, we rigorously study the extension of network pruning strategies to preserve both benign accuracy and robustness of a network. Starting with a formal definition of the pruning procedure, including pre-training, weights pruning, and fine-tuning, we propose a new pruning method that can create compact networks while preserving both benign accuracy and robustness. Our method is based on two main insights: (1) we ensure that the training objectives of the pre-training and fine-tuning steps match the training objective of the desired robust model (e.g., adversarial robustness/verifiable robustness), and (2) we keep the pruning strategy agnostic to pre-training and fine-tuning objectives. We evaluate our method on four different networks on the CIFAR-10 dataset and measure benign accuracy, empirical robust accuracy, and verifiable robust accuracy. We demonstrate that our pruning method can preserve on average 93\% benign accuracy, 92.5\% empirical robust accuracy, and 85.0\% verifiable robust accuracy while compressing the tested network by 10$\times$.

* 14 pages, 9 figures, 7 tables 

  Access Model/Code and Paper
Enhancing Gradient-based Attacks with Symbolic Intervals

Jun 05, 2019
Shiqi Wang, Yizheng Chen, Ahmed Abdou, Suman Jana

Recent breakthroughs in defenses against adversarial examples, like adversarial training, make the neural networks robust against various classes of attackers (e.g., first-order gradient-based attacks). However, it is an open question whether the adversarially trained networks are truly robust under unknown attacks. In this paper, we present interval attacks, a new technique to find adversarial examples to evaluate the robustness of neural networks. Interval attacks leverage symbolic interval propagation, a bound propagation technique that can exploit a broader view around the current input to locate promising areas containing adversarial instances, which in turn can be searched with existing gradient-guided attacks. We can obtain such a broader view using sound bound propagation methods to track and over-approximate the errors of the network within given input ranges. Our results show that, on state-of-the-art adversarially trained networks, interval attack can find on average 47% relatively more violations than the state-of-the-art gradient-guided PGD attack.

  Access Model/Code and Paper
MixTrain: Scalable Training of Verifiably Robust Neural Networks

Dec 01, 2018
Shiqi Wang, Yizheng Chen, Ahmed Abdou, Suman Jana

Making neural networks robust against adversarial inputs has resulted in an arms race between new defenses and attacks. The most promising defenses, adversarially robust training and verifiably robust training, have limitations that restrict their practical applications. The adversarially robust training only makes the networks robust against a subclass of attackers and we reveal such weaknesses by developing a new attack based on interval gradients. By contrast, verifiably robust training provides protection against any L-p norm-bounded attacker but incurs orders of magnitude more computational and memory overhead than adversarially robust training. We propose two novel techniques, stochastic robust approximation and dynamic mixed training, to drastically improve the efficiency of verifiably robust training without sacrificing verified robustness. We leverage two critical insights: (1) instead of over the entire training set, sound over-approximations over randomly subsampled training data points are sufficient for efficiently guiding the robust training process; and (2) We observe that the test accuracy and verifiable robustness often conflict after certain training epochs. Therefore, we use a dynamic loss function to adaptively balance them for each epoch. We designed and implemented our techniques as part of MixTrain and evaluated it on six networks trained on three popular datasets including MNIST, CIFAR, and ImageNet-200. Our evaluations show that MixTrain can achieve up to $95.2\%$ verified robust accuracy against $L_\infty$ norm-bounded attackers while taking $15$ and $3$ times less training time than state-of-the-art verifiably robust training and adversarially robust training schemes, respectively. Furthermore, MixTrain easily scales to larger networks like the one trained on ImageNet-200, significantly outperforming the existing verifiably robust training methods.

  Access Model/Code and Paper
DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars

Mar 20, 2018
Yuchi Tian, Kexin Pei, Suman Jana, Baishakhi Ray

Recent advances in Deep Neural Networks (DNNs) have led to the development of DNN-driven autonomous cars that, using sensors like camera, LiDAR, etc., can drive without any human intervention. Most major manufacturers including Tesla, GM, Ford, BMW, and Waymo/Google are working on building and testing different types of autonomous vehicles. The lawmakers of several US states including California, Texas, and New York have passed new legislation to fast-track the process of testing and deployment of autonomous vehicles on their roads. However, despite their spectacular progress, DNNs, just like traditional software, often demonstrate incorrect or unexpected corner case behaviors that can lead to potentially fatal collisions. Several such real-world accidents involving autonomous cars have already happened including one which resulted in a fatality. Most existing testing techniques for DNN-driven vehicles are heavily dependent on the manual collection of test data under different driving conditions which become prohibitively expensive as the number of test conditions increases. In this paper, we design, implement and evaluate DeepTest, a systematic testing tool for automatically detecting erroneous behaviors of DNN-driven vehicles that can potentially lead to fatal crashes. First, our tool is designed to automatically generated test cases leveraging real-world changes in driving conditions like rain, fog, lighting conditions, etc. DeepTest systematically explores different parts of the DNN logic by generating test inputs that maximize the numbers of activated neurons. DeepTest found thousands of erroneous behaviors under different realistic driving conditions (e.g., blurring, rain, fog, etc.) many of which lead to potentially fatal crashes in three top performing DNNs in the Udacity self-driving car challenge.

  Access Model/Code and Paper
Towards Practical Verification of Machine Learning: The Case of Computer Vision Systems

Dec 16, 2017
Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana

Due to the increasing usage of machine learning (ML) techniques in security- and safety-critical domains, such as autonomous systems and medical diagnosis, ensuring correct behavior of ML systems, especially for different corner cases, is of growing importance. In this paper, we propose a generic framework for evaluating security and robustness of ML systems using different real-world safety properties. We further design, implement and evaluate VeriVis, a scalable methodology that can verify a diverse set of safety properties for state-of-the-art computer vision systems with only blackbox access. VeriVis leverage different input space reduction techniques for efficient verification of different safety properties. VeriVis is able to find thousands of safety violations in fifteen state-of-the-art computer vision systems including ten Deep Neural Networks (DNNs) such as Inception-v3 and Nvidia's Dave self-driving system with thousands of neurons as well as five commercial third-party vision APIs including Google vision and Clarifai for twelve different safety properties. Furthermore, VeriVis can successfully verify local safety properties, on average, for around 31.7% of the test images. VeriVis finds up to 64.8x more violations than existing gradient-based methods that, unlike VeriVis, cannot ensure non-existence of any violations. Finally, we show that retraining using the safety violations detected by VeriVis can reduce the average number of violations up to 60.2%.

* 16 pages, 11 tables, 11 figures 

  Access Model/Code and Paper
DeepXplore: Automated Whitebox Testing of Deep Learning Systems

Sep 24, 2017
Kexin Pei, Yinzhi Cao, Junfeng Yang, Suman Jana

Deep learning (DL) systems are increasingly deployed in safety- and security-critical domains including self-driving cars and malware detection, where the correctness and predictability of a system's behavior for corner case inputs are of great importance. Existing DL testing depends heavily on manually labeled data and therefore often fails to expose erroneous behaviors for rare inputs. We design, implement, and evaluate DeepXplore, the first whitebox framework for systematically testing real-world DL systems. First, we introduce neuron coverage for systematically measuring the parts of a DL system exercised by test inputs. Next, we leverage multiple DL systems with similar functionality as cross-referencing oracles to avoid manual checking. Finally, we demonstrate how finding inputs for DL systems that both trigger many differential behaviors and achieve high neuron coverage can be represented as a joint optimization problem and solved efficiently using gradient-based search techniques. DeepXplore efficiently finds thousands of incorrect corner case behaviors (e.g., self-driving cars crashing into guard rails and malware masquerading as benign software) in state-of-the-art DL models with thousands of neurons trained on five popular datasets including ImageNet and Udacity self-driving challenge data. For all tested DL models, on average, DeepXplore generated one test input demonstrating incorrect behavior within one second while running only on a commodity laptop. We further show that the test inputs generated by DeepXplore can also be used to retrain the corresponding DL model to improve the model's accuracy by up to 3%.

* To be published in SOSP'17 

  Access Model/Code and Paper
Learning Nonlinear Loop Invariants with Gated Continuous Logic Networks

Mar 24, 2020
Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, Ronghui Gu

In many cases, verifying real-world programs requires inferring loop invariants with nonlinear constraints. This is especially true in programs that perform many numerical operations, such as control systems for avionics or industrial plants. Recently, data-driven methods for loop invariant inference have gained popularity, especially on linear loop invariants. However, applying data-driven inference to nonlinear invariants is challenging due to the large numbers of and large magnitudes of high-order terms, the potential for overfitting on samples, and the large space of possible nonlinear inequality bounds. In this paper, we introduce a new neural architecture for general SMT learning, the Gated Continuous Logic Network (G-CLN), and apply it to nonlinear loop invariant learning. G-CLNs extend the Continuous Logic Network architecture with gating units and dropout, which allow the model to robustly learn general invariants over large numbers of terms. To address overfitting that arises from finite program sampling, we introduce fractional sampling---a sound relaxation of loop semantics to continuous functions that facilitates unbounded sampling on the real domain. We also design a new CLN activation function, the Piecewise Biased Quadratic Unit (PBQU), for naturally learning tight inequality bounds. We incorporate these methods into a nonlinear loop invariant inference system that can learn general nonlinear loop invariants. We evaluate our system on a benchmark of nonlinear loop invariants and show it solves 26 out of 27 problems, 3 more than prior work, with an average runtime of 53.3 seconds. We further demonstrate the generic learning ability of G-CLNs by solving all 124 problems in the linear Code2Inv benchmark. We also perform a quantitative stability evaluation and show G-CLNs have a convergence rate of $97.5\%$ on quadratic problems, a $39.2\%$ improvement over CLN models.

  Access Model/Code and Paper
Training Robust Tree Ensembles for Security

Dec 03, 2019
Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, Suman Jana

Tree ensemble models including random forests and gradient boosted decision trees, are widely used as security classifiers to detect malware, phishing, scam, social engineering, etc. However, the robustness of tree ensembles has not been thoroughly studied. Existing approaches mainly focus on adding more robust features and conducting feature ablation study, which do not provide robustness guarantee against strong adversaries. In this paper, we propose a new algorithm to train robust tree ensembles. Robust training maximizes the defender's gain as if the adversary is trying to minimize that. We design a general algorithm based on greedy heuristic to find better solutions to the minimization problem than previous work. We implement the algorithm for gradient boosted decision trees in xgboost and random forests in scikit-learn. Our evaluation over benchmark datasets show that, we can train more robust models than the start-of-the-art robust training algorithm in gradient boosted decision trees, with a 1.26X increase in the $L_\infty$ evasion distance required for the strongest whitebox attacker. In addition, our algorithm is general across different gain metrics and types of tree ensembles. We achieve 3.32X increase in $L_\infty$ robustness distance compared to the baseline random forest training method. Furthermore, to make the robustness increase meaningful in security applications, we propose attack-cost-driven constraints for the robust training process. Our training algorithm maximizes attacker's evasion cost by integrating domain knowledge about feature manipulation costs. We use twitter spam detection as a case study to analyze attacker's cost increase to evade our robust model. Our technique can train robust model to rank robust features as most important ones, and our robust model requires about 8.4X increase in attacker's economic cost to be evaded compared to the baseline.

  Access Model/Code and Paper
CLN2INV: Learning Loop Invariants with Continuous Logic Networks

Oct 17, 2019
Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, Suman Jana

Program verification offers a framework for ensuring program correctness and therefore systematically eliminating different classes of bugs. Inferring loop invariants is one of the main challenges behind automated verification of real-world programs which often contain many loops. In this paper, we present Continuous Logic Network (CLN), a novel neural architecture for automatically learning loop invariants directly from program execution traces. Unlike existing neural networks, CLNs can learn precise and explicit representations of formulas in Satisfiability Modulo Theories (SMT) for loop invariants from program execution traces. We develop a new sound and complete semantic mapping for assigning SMT formulas to continuous truth values that allows CLNs to be trained efficiently. We use CLNs to implement a new inference system for loop invariants, CLN2INV, that significantly outperforms existing approaches on the popular Code2Inv dataset. CLN2INV is the first tool to solve all 124 theoretically solvable problems in the Code2Inv dataset. Moreover, CLN2INV takes only 1.1 seconds on average for each problem, which is 40 times faster than existing approaches. We further demonstrate that CLN2INV can even learn 12 significantly more complex loop invariants than the ones required for the Code2Inv dataset.

  Access Model/Code and Paper
Efficient Formal Safety Analysis of Neural Networks

Oct 26, 2018
Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana

Neural networks are increasingly deployed in real-world safety-critical domains such as autonomous driving, aircraft collision avoidance, and malware detection. However, these networks have been shown to often mispredict on inputs with minor adversarial or even accidental perturbations. Consequences of such errors can be disastrous and even potentially fatal as shown by the recent Tesla autopilot crash. Thus, there is an urgent need for formal analysis systems that can rigorously check neural networks for violations of different safety properties such as robustness against adversarial perturbations within a certain $L$-norm of a given image. An effective safety analysis system for a neural network must be able to either ensure that a safety property is satisfied by the network or find a counterexample, i.e., an input for which the network will violate the property. Unfortunately, most existing techniques for performing such analysis struggle to scale beyond very small networks and the ones that can scale to larger networks suffer from high false positives and cannot produce concrete counterexamples in case of a property violation. In this paper, we present a new efficient approach for rigorously checking different safety properties of neural networks that significantly outperforms existing approaches by multiple orders of magnitude. Our approach can check different safety properties and find concrete counterexamples for networks that are 10$\times$ larger than the ones supported by existing analysis techniques. We believe that our approach to estimating tight output bounds of a network for a given input range can also help improve the explainability of neural networks and guide the training process of more robust neural networks.

* Accepted to NIPS'18 

  Access Model/Code and Paper
Certified Robustness to Adversarial Examples with Differential Privacy

Oct 07, 2018
Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, Suman Jana

Adversarial examples that fool machine learning models, particularly deep neural networks, have been a topic of intense research interest, with attacks and defenses being developed in a tight back-and-forth. Most past defenses are best effort and have been shown to be vulnerable to sophisticated attacks. Recently a set of certified defenses have been introduced, which provide guarantees of robustness to norm-bounded attacks, but they either do not scale to large datasets or are limited in the types of models they can support. This paper presents the first certified defense that both scales to large networks and datasets (such as Google's Inception network for ImageNet) and applies broadly to arbitrary model types. Our defense, called PixelDP, is based on a novel connection between robustness against adversarial examples and differential privacy, a cryptographically-inspired formalism, that provides a rigorous, generic, and flexible foundation for defense.

  Access Model/Code and Paper
Formal Security Analysis of Neural Networks using Symbolic Intervals

Jul 01, 2018
Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana

Due to the increasing deployment of Deep Neural Networks (DNNs) in real-world security-critical domains including autonomous vehicles and collision avoidance systems, formally checking security properties of DNNs, especially under different attacker capabilities, is becoming crucial. Most existing security testing techniques for DNNs try to find adversarial examples without providing any formal security guarantees about the non-existence of such adversarial examples. Recently, several projects have used different types of Satisfiability Modulo Theory (SMT) solvers to formally check security properties of DNNs. However, all of these approaches are limited by the high overhead caused by the solver. In this paper, we present a new direction for formally checking security properties of DNNs without using SMT solvers. Instead, we leverage interval arithmetic to compute rigorous bounds on the DNN outputs. Our approach, unlike existing solver-based approaches, is easily parallelizable. We further present symbolic interval analysis along with several other optimizations to minimize overestimations of output bounds. We design, implement, and evaluate our approach as part of ReluVal, a system for formally checking security properties of Relu-based DNNs. Our extensive empirical results show that ReluVal outperforms Reluplex, a state-of-the-art solver-based system, by 200 times on average. On a single 8-core machine without GPUs, within 4 hours, ReluVal is able to verify a security property that Reluplex deemed inconclusive due to timeout after running for more than 5 days. Our experiments demonstrate that symbolic interval analysis is a promising new direction towards rigorously analyzing different security properties of DNNs.

* Accepted to USENIX Security 2018 

  Access Model/Code and Paper
NEUZZ: Efficient Fuzzing with NeuralProgram Smoothing

Nov 04, 2018
Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, Suman Jana

Fuzzing has become the de facto standard technique for finding software vulnerabilities. However, even state-of-the-art fuzzers are not very efficient at finding hard-to-trigger software bugs. Most popular fuzzers use evolutionary guidance to generate inputs that can trigger different bugs. Such evolutionary algorithms, while fast and simple to implement, often get stuck in fruitless sequences of random mutations. Gradient-guided optimization presents a promising alternative to evolutionary guidance. Gradient-guided techniques have been shown to significantly outperform evolutionary algorithms at solving high-dimensional structured optimization problems in domains like machine learning by efficiently utilizing gradients or higher-order derivatives of the underlying function. However, gradient-guided approaches are not directly applicable to fuzzing as real-world program behaviors contain many discontinuities, plateaus, and ridges where the gradient-based methods often get stuck. We observe that this problem can be addressed by creating a smooth surrogate function approximating the discrete branching behavior of target program. In this paper, we propose a novel program smoothing technique using surrogate neural network models that can incrementally learn smooth approximations of a complex, real-world program's branching behaviors. We further demonstrate that such neural network models can be used together with gradient-guided input generation schemes to significantly improve the fuzzing efficiency. Our extensive evaluations demonstrate that NEUZZ significantly outperforms 10 state-of-the-art graybox fuzzers on 10 real-world programs both at finding new bugs and achieving higher edge coverage. NEUZZ found 31 unknown bugs that other fuzzers failed to find in 10 real world programs and achieved 3X more edge coverage than all of the tested graybox fuzzers for 24 hours running.

  Access Model/Code and Paper
Towards Practical Lottery Ticket Hypothesis for Adversarial Training

Mar 06, 2020
Bai Li, Shiqi Wang, Yunhan Jia, Yantao Lu, Zhenyu Zhong, Lawrence Carin, Suman Jana

Recent research has proposed the lottery ticket hypothesis, suggesting that for a deep neural network, there exist trainable sub-networks performing equally or better than the original model with commensurate training steps. While this discovery is insightful, finding proper sub-networks requires iterative training and pruning. The high cost incurred limits the applications of the lottery ticket hypothesis. We show there exists a subset of the aforementioned sub-networks that converge significantly faster during the training process and thus can mitigate the cost issue. We conduct extensive experiments to show such sub-networks consistently exist across various model structures for a restrictive setting of hyperparameters ($e.g.$, carefully selected learning rate, pruning ratio, and model capacity). As a practical application of our findings, we demonstrate that such sub-networks can help in cutting down the total time of adversarial training, a standard approach to improve robustness, by up to 49\% on CIFAR-10 to achieve the state-of-the-art robustness.

  Access Model/Code and Paper