Models, code, and papers for "Wei-Jie Huang":

Exploring Lexical, Syntactic, and Semantic Features for Chinese Textual Entailment in NTCIR RITE Evaluation Tasks

Apr 08, 2015
Wei-Jie Huang, Chao-Lin Liu

We computed linguistic information at the lexical, syntactic, and semantic levels for Recognizing Inference in Text (RITE) tasks for both traditional and simplified Chinese in NTCIR-9 and NTCIR-10. Techniques for syntactic parsing, named-entity recognition, and near synonym recognition were employed, and features like counts of common words, statement lengths, negation words, and antonyms were considered to judge the entailment relationships of two statements, while we explored both heuristics-based functions and machine-learning approaches. The reported systems showed robustness by simultaneously achieving second positions in the binary-classification subtasks for both simplified and traditional Chinese in NTCIR-10 RITE-2. We conducted more experiments with the test data of NTCIR-9 RITE, with good results. We also extended our work to search for better configurations of our classifiers and investigated contributions of individual features. This extended work showed interesting results and should encourage further discussion.

* 20 pages, 1 figure, 26 tables, Journal article in Soft Computing (Spinger). Soft Computing, online. Springer, Germany, 2015 

  Access Model/Code and Paper
Hidden Trends in 90 Years of Harvard Business Review

Oct 20, 2012
Chia-Chi Tsai, Chao-Lin Liu, Wei-Jie Huang, Man-Kwan Shan

In this paper, we demonstrate and discuss results of our mining the abstracts of the publications in Harvard Business Review between 1922 and 2012. Techniques for computing n-grams, collocations, basic sentiment analysis, and named-entity recognition were employed to uncover trends hidden in the abstracts. We present findings about international relationships, sentiment in HBR's abstracts, important international companies, influential technological inventions, renown researchers in management theories, US presidents via chronological analyses.

* 6 pages, 14 figures, Proceedings of 2012 International Conference on Technologies and Applications of Artificial Intelligence 

  Access Model/Code and Paper