Models, code, and papers for "Wenjun Zeng":

Towards a Better Match in Siamese Network Based Visual Object Tracker

Sep 05, 2018
Anfeng He, Chong Luo, Xinmei Tian, Wenjun Zeng

Recently, Siamese network based trackers have received tremendous interest for their fast tracking speed and high performance. Despite the great success, this tracking framework still suffers from several limitations. First, it cannot properly handle large object rotation. Second, tracking gets easily distracted when the background contains salient objects. In this paper, we propose two simple yet effective mechanisms, namely angle estimation and spatial masking, to address these issues. The objective is to extract more representative features so that a better match can be obtained between the same object from different frames. The resulting tracker, named Siam-BM, not only significantly improves the tracking performance, but more importantly maintains the realtime capability. Evaluations on the VOT2017 dataset show that Siam-BM achieves an EAO of 0.335, which makes it the best-performing realtime tracker to date.

* This paper is accepted by ECCV Visual Object Tracking Challenge Workshop VOT2018 

  Access Model/Code and Paper
A Twofold Siamese Network for Real-Time Object Tracking

Feb 24, 2018
Anfeng He, Chong Luo, Xinmei Tian, Wenjun Zeng

Observing that Semantic features learned in an image classification task and Appearance features learned in a similarity matching task complement each other, we build a twofold Siamese network, named SA-Siam, for real-time object tracking. SA-Siam is composed of a semantic branch and an appearance branch. Each branch is a similarity-learning Siamese network. An important design choice in SA-Siam is to separately train the two branches to keep the heterogeneity of the two types of features. In addition, we propose a channel attention mechanism for the semantic branch. Channel-wise weights are computed according to the channel activations around the target position. While the inherited architecture from SiamFC \cite{SiamFC} allows our tracker to operate beyond real-time, the twofold design and the attention mechanism significantly improve the tracking performance. The proposed SA-Siam outperforms all other real-time trackers by a large margin on OTB-2013/50/100 benchmarks.

* Accepted by CVPR'18 

  Access Model/Code and Paper
Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A Geometric Approach

Mar 25, 2020
Zhe Zhang, Chunyu Wang, Wenhu Qin, Wenjun Zeng

We propose to estimate 3D human pose from multi-view images and a few IMUs attached at person's limbs. It operates by firstly detecting 2D poses from the two signals, and then lifting them to the 3D space. We present a geometric approach to reinforce the visual features of each pair of joints based on the IMUs. This notably improves 2D pose estimation accuracy especially when one joint is occluded. We call this approach Orientation Regularized Network (ORN). Then we lift the multi-view 2D poses to the 3D space by an Orientation Regularized Pictorial Structure Model (ORPSM) which jointly minimizes the projection error between the 3D and 2D poses, along with the discrepancy between the 3D pose and IMU orientations. The simple two-step approach reduces the error of the state-of-the-art by a large margin on a public dataset. Our code will be released at

* Accepted by CVPR 2020. Code will be released at 

  Access Model/Code and Paper
Uncertainty-Aware Multi-Shot Knowledge Distillation for Image-Based Object Re-Identification

Jan 21, 2020
Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen

Object re-identification (re-id) aims to identify a specific object across times or camera views, with the person re-id and vehicle re-id as the most widely studied applications. Re-id is challenging because of the variations in viewpoints, (human) poses, and occlusions. Multi-shots of the same object can cover diverse viewpoints/poses and thus provide more comprehensive information. In this paper, we propose exploiting the multi-shots of the same identity to guide the feature learning of each individual image. Specifically, we design an Uncertainty-aware Multi-shot Teacher-Student (UMTS) Network. It consists of a teacher network (T-net) that learns the comprehensive features from multiple images of the same object, and a student network (S-net) that takes a single image as input. In particular, we take into account the data dependent heteroscedastic uncertainty for effectively transferring the knowledge from the T-net to S-net. To the best of our knowledge, we are the first to make use of multi-shots of an object in a teacher-student learning manner for effectively boosting the single image based re-id. We validate the effectiveness of our approach on the popular vehicle re-id and person re-id datasets. In inference, the S-net alone significantly outperforms the baselines and achieves the state-of-the-art performance.

* Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) 

  Access Model/Code and Paper
FPCR-Net: Feature Pyramidal Correlation and Residual Reconstruction for Semi-supervised Optical Flow Estimation

Jan 17, 2020
Xiaolin Song, Jingyu Yang, Cuiling Lan, Wenjun Zeng

Optical flow estimation is an important yet challenging problem in the field of video analytics. The features of different semantics levels/layers of a convolutional neural network can provide information of different granularity. To exploit such flexible and comprehensive information, we propose a semi-supervised Feature Pyramidal Correlation and Residual Reconstruction Network (FPCR-Net) for optical flow estimation from frame pairs. It consists of two main modules: pyramid correlation mapping and residual reconstruction. The pyramid correlation mapping module takes advantage of the multi-scale correlations of global/local patches by aggregating features of different scales to form a multi-level cost volume. The residual reconstruction module aims to reconstruct the sub-band high-frequency residuals of finer optical flow in each stage. Based on the pyramid correlation mapping, we further propose a correlation-warping-normalization (CWN) module to efficiently exploit the correlation dependency. Experiment results show that the proposed scheme achieves the state-of-the-art performance, with improvement by 0.80, 1.15 and 0.10 in terms of average end-point error (AEE) against competing baseline methods - FlowNet2, LiteFlowNet and PWC-Net on the Final pass of Sintel dataset, respectively.

* 8 pages, 8 figures, 6 tables 

  Access Model/Code and Paper
Moving Indoor: Unsupervised Video Depth Learning in Challenging Environments

Oct 20, 2019
Junsheng Zhou, Yuwang Wang, Kaihuai Qin, Wenjun Zeng

Recently unsupervised learning of depth from videos has made remarkable progress and the results are comparable to fully supervised methods in outdoor scenes like KITTI. However, there still exist great challenges when directly applying this technology in indoor environments, e.g., large areas of non-texture regions like white wall, more complex ego-motion of handheld camera, transparent glasses and shiny objects. To overcome these problems, we propose a new optical-flow based training paradigm which reduces the difficulty of unsupervised learning by providing a clearer training target and handles the non-texture regions. Our experimental evaluation demonstrates that the result of our method is comparable to fully supervised methods on the NYU Depth V2 benchmark. To the best of our knowledge, this is the first quantitative result of purely unsupervised learning method reported on indoor datasets.

* Accepted by ICCV2019 

  Access Model/Code and Paper
Unsupervised High-Resolution Depth Learning From Videos With Dual Networks

Oct 20, 2019
Junsheng Zhou, Yuwang Wang, Kaihuai Qin, Wenjun Zeng

Unsupervised depth learning takes the appearance difference between a target view and a view synthesized from its adjacent frame as supervisory signal. Since the supervisory signal only comes from images themselves, the resolution of training data significantly impacts the performance. High-resolution images contain more fine-grained details and provide more accurate supervisory signal. However, due to the limitation of memory and computation power, the original images are typically down-sampled during training, which suffers heavy loss of details and disparity accuracy. In order to fully explore the information contained in high-resolution data, we propose a simple yet effective dual networks architecture, which can directly take high-resolution images as input and generate high-resolution and high-accuracy depth map efficiently. We also propose a Self-assembled Attention (SA-Attention) module to handle low-texture region. The evaluation on the benchmark KITTI and Make3D datasets demonstrates that our method achieves state-of-the-art results in the monocular depth estimation task.

* Accepted by ICCV2019 

  Access Model/Code and Paper
Cross View Fusion for 3D Human Pose Estimation

Sep 03, 2019
Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang, Wenjun Zeng

We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D poses from the multi-view 2D poses. First, we introduce a cross-view fusion scheme into CNN to jointly estimate 2D poses for multiple views. Consequently, the 2D pose estimation for each view already benefits from other views. Second, we present a recursive Pictorial Structure Model to recover the 3D pose from the multi-view 2D poses. It gradually improves the accuracy of 3D pose with affordable computational cost. We test our method on two public datasets H36M and Total Capture. The Mean Per Joint Position Errors on the two datasets are 26mm and 29mm, which outperforms the state-of-the-arts remarkably (26mm vs 52mm, 29mm vs 35mm). Our code is released at \url{}.

* Accepted by ICCV 2019 

  Access Model/Code and Paper
Quality-Gated Convolutional LSTM for Enhancing Compressed Video

Apr 14, 2019
Ren Yang, Xiaoyan Sun, Mai Xu, Wenjun Zeng

The past decade has witnessed great success in applying deep learning to enhance the quality of compressed video. However, the existing approaches aim at quality enhancement on a single frame, or only using fixed neighboring frames. Thus they fail to take full advantage of the inter-frame correlation in the video. This paper proposes the Quality-Gated Convolutional Long Short-Term Memory (QG-ConvLSTM) network with bi-directional recurrent structure to fully exploit the advantageous information in a large range of frames. More importantly, due to the obvious quality fluctuation among compressed frames, higher quality frames can provide more useful information for other frames to enhance quality. Therefore, we propose learning the "forget" and "input" gates in the ConvLSTM cell from quality-related features. As such, the frames with various quality contribute to the memory in ConvLSTM with different importance, making the information of each frame reasonably and adequately used. Finally, the experiments validate the effectiveness of our QG-ConvLSTM approach in advancing the state-of-the-art quality enhancement of compressed video, and the ablation study shows that our QG-ConvLSTM approach is learnt to make a trade-off between quality and correlation when leveraging multi-frame information. The project page:

* Accepted to IEEE International Conference on Multimedia and Expo (ICME) 2019 

  Access Model/Code and Paper
SPM-Tracker: Series-Parallel Matching for Real-Time Visual Object Tracking

Apr 09, 2019
Guangting Wang, Chong Luo, Zhiwei Xiong, Wenjun Zeng

The greatest challenge facing visual object tracking is the simultaneous requirements on robustness and discrimination power. In this paper, we propose a SiamFC-based tracker, named SPM-Tracker, to tackle this challenge. The basic idea is to address the two requirements in two separate matching stages. Robustness is strengthened in the coarse matching (CM) stage through generalized training while discrimination power is enhanced in the fine matching (FM) stage through a distance learning network. The two stages are connected in series as the input proposals of the FM stage are generated by the CM stage. They are also connected in parallel as the matching scores and box location refinements are fused to generate the final results. This innovative series-parallel structure takes advantage of both stages and results in superior performance. The proposed SPM-Tracker, running at 120fps on GPU, achieves an AUC of 0.687 on OTB-100 and an EAO of 0.434 on VOT-16, exceeding other real-time trackers by a notable margin.

* to appear in CVPR'19 

  Access Model/Code and Paper
View Invariant 3D Human Pose Estimation

Jan 30, 2019
Guoqiang Wei, Cuiling Lan, Wenjun Zeng, Zhibo Chen

The recent success of deep networks has significantly advanced 3D human pose estimation from 2D images. The diversity of capturing viewpoints and the flexibility of the human poses, however, remain some significant challenges. In this paper, we propose a view invariant 3D human pose estimation module to alleviate the effects of viewpoint diversity. The framework consists of a base network, which provides an initial estimation of a 3D pose, a view-invariant hierarchical correction network (VI-HC) on top of that to learn the 3D pose refinement under consistent views, and a view-invariant discriminative network (VID) to enforce high-level constraints over body configurations. In VI-HC, the initial 3D pose inputs are automatically transformed to consistent views for further refinements at the global body and local body parts level, respectively. For the VID, under consistent viewpoints, we use adversarial learning to differentiate between estimated poses and real poses to avoid implausible 3D poses. Experimental results demonstrate that the consistent viewpoints can dramatically enhance the performance. Our module shows robustness for different 3D pose base networks and achieves a significant improvement (about 9%) over a powerful baseline on the public 3D pose estimation benchmark Human3.6M.

  Access Model/Code and Paper
Densely Semantically Aligned Person Re-Identification

Dec 21, 2018
Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, Zhibo Chen

We propose a densely semantically aligned person re-identification (re-ID) framework. It fundamentally addresses the body misalignment problem caused by pose/viewpoint variations, imperfect person detection, occlusion,etc.. By leveraging the estimation of the dense semantics of a person image, we construct a set of densely semantically aligned part images (DSAP-images), where the same spatial positions have the same semantics across different person images. We design a two-stream network that consists of a main full image stream (MF-Stream) and a densely semantically-aligned guiding stream (DSAG-Stream). The DSAG-Stream, with the DSAP-images as input, acts as a regulator to guide the MF-Stream to learn densely semantically aligned features from the original image. In the inference, the DSAG-Stream is discarded and only the MF-Stream is needed, which makes the inference system computationally efficient and robust. To our best knowledge, we are the first to make use of fine grained semantics for addressing misalignment problems for re-ID. Our method achieves rank-1 accuracy of 78.9% (new protocol) on the CUHK03 dataset, 90.4% on the CUHK01 dataset, and 95.7% on the Market1501 dataset, outperforming state-of-the-art methods.

  Access Model/Code and Paper
Detect or Track: Towards Cost-Effective Video Object Detection/Tracking

Nov 13, 2018
Hao Luo, Wenxuan Xie, Xinggang Wang, Wenjun Zeng

State-of-the-art object detectors and trackers are developing fast. Trackers are in general more efficient than detectors but bear the risk of drifting. A question is hence raised -- how to improve the accuracy of video object detection/tracking by utilizing the existing detectors and trackers within a given time budget? A baseline is frame skipping -- detecting every N-th frames and tracking for the frames in between. This baseline, however, is suboptimal since the detection frequency should depend on the tracking quality. To this end, we propose a scheduler network, which determines to detect or track at a certain frame, as a generalization of Siamese trackers. Although being light-weight and simple in structure, the scheduler network is more effective than the frame skipping baselines and flow-based approaches, as validated on ImageNet VID dataset in video object detection/tracking.

* Accepted to AAAI 2019 

  Access Model/Code and Paper
Learning to Update for Object Tracking

Jun 19, 2018
Bi Li, Wenxuan Xie, Wenjun Zeng, Wenyu Liu

Model update lies at the heart of object tracking.Generally, model update is formulated as an online learning problem where a target model is learned over the online training dataset. Our key innovation is to \emph{learn the online learning algorithm itself using large number of offline videos}, i.e., \emph{learning to update}. The learned updater takes as input the online training dataset and outputs an updated target model. As a first attempt, we design the learned updater based on recurrent neural networks (RNNs) and demonstrate its application in a template-based tracker and a correlation filter-based tracker. Our learned updater consistently improves the base trackers and runs faster than realtime on GPU while requiring small memory footprint during testing. Experiments on standard benchmarks demonstrate that our learned updater outperforms commonly used update baselines including the efficient exponential moving average (EMA)-based update and the well-designed stochastic gradient descent (SGD)-based update. Equipped with our learned updater, the template-based tracker achieves state-of-the-art performance among realtime trackers on GPU.

  Access Model/Code and Paper
Photo Stylistic Brush: Robust Style Transfer via Superpixel-Based Bipartite Graph

Jul 15, 2016
Jiaying Liu, Wenhan Yang, Xiaoyan Sun, Wenjun Zeng

With the rapid development of social network and multimedia technology, customized image and video stylization has been widely used for various social-media applications. In this paper, we explore the problem of exemplar-based photo style transfer, which provides a flexible and convenient way to invoke fantastic visual impression. Rather than investigating some fixed artistic patterns to represent certain styles as was done in some previous works, our work emphasizes styles related to a series of visual effects in the photograph, e.g. color, tone, and contrast. We propose a photo stylistic brush, an automatic robust style transfer approach based on Superpixel-based BIpartite Graph (SuperBIG). A two-step bipartite graph algorithm with different granularity levels is employed to aggregate pixels into superpixels and find their correspondences. In the first step, with the extracted hierarchical features, a bipartite graph is constructed to describe the content similarity for pixel partition to produce superpixels. In the second step, superpixels in the input/reference image are rematched to form a new superpixel-based bipartite graph, and superpixel-level correspondences are generated by a bipartite matching. Finally, the refined correspondence guides SuperBIG to perform the transformation in a decorrelated color space. Extensive experimental results demonstrate the effectiveness and robustness of the proposed method for transferring various styles of exemplar images, even for some challenging cases, such as night images.

  Access Model/Code and Paper
Deeply-Fused Nets

May 25, 2016
Jingdong Wang, Zhen Wei, Ting Zhang, Wenjun Zeng

In this paper, we present a novel deep learning approach, deeply-fused nets. The central idea of our approach is deep fusion, i.e., combine the intermediate representations of base networks, where the fused output serves as the input of the remaining part of each base network, and perform such combinations deeply over several intermediate representations. The resulting deeply fused net enjoys several benefits. First, it is able to learn multi-scale representations as it enjoys the benefits of more base networks, which could form the same fused network, other than the initial group of base networks. Second, in our suggested fused net formed by one deep and one shallow base networks, the flows of the information from the earlier intermediate layer of the deep base network to the output and from the input to the later intermediate layer of the deep base network are both improved. Last, the deep and shallow base networks are jointly learnt and can benefit from each other. More interestingly, the essential depth of a fused net composed from a deep base network and a shallow base network is reduced because the fused net could be composed from a less deep base network, and thus training the fused net is less difficult than training the initial deep base network. Empirical results demonstrate that our approach achieves superior performance over two closely-related methods, ResNet and Highway, and competitive performance compared to the state-of-the-arts.

  Access Model/Code and Paper
Semantics-Aligned Representation Learning for Person Re-identification

May 30, 2019
Xin Jin, Cuiling Lan, Wenjun Zeng, Guoqiang Wei, Zhibo Chen

Person re-identification (reID) aims to match person images to retrieve the ones with the same identity. This is a challenging task, as the images to be matched are generally semantically misaligned due to the diversity of human poses and capture viewpoints, incompleteness of the visible bodies (due to occlusion), etc. In this paper, we propose a framework that drives the reID network to learn semantics-aligned feature representation through delicate supervision designs. Specifically, we build a Semantics Aligning Network (SAN) which consists of a base network as encoder (SA-Enc) for re-ID, and a decoder (SA-Dec) for reconstructing/regressing the densely semantics aligned full texture image. We jointly train the SAN under the supervisions of person re-identification and aligned texture generation. Moreover, at the decoder, besides the reconstruction loss, we add triplet reID constraints/losses over the feature maps as the perceptual losses. The decoder is discarded in the inference/test and thus our scheme is computationally efficient. Ablation studies demonstrate the effectiveness of our design. We achieve the state-of-the-art performances on the benchmark datasets CUHK03, Market1501, MSMT17, and the partial person reID dataset Partial REID.

  Access Model/Code and Paper
CaseNet: Content-Adaptive Scale Interaction Networks for Scene Parsing

Apr 17, 2019
Xin Jin, Cuiling Lan, Wenjun Zeng, Zhizheng Zhang, Zhibo Chen

Objects in an image exhibit diverse scales. Adaptive receptive fields are expected to catch suitable range of context for accurate pixel level semantic prediction for handling objects of diverse sizes. Recently, atrous convolution with different dilation rates has been used to generate features of multi-scales through several branches and these features are fused for prediction. However, there is a lack of explicit interaction among the branches to adaptively make full use of the contexts. In this paper, we propose a Content-Adaptive Scale Interaction Network (CaseNet) to exploit the multi-scale features for scene parsing. We build the CaseNet based on the classic Atrous Spatial Pyramid Pooling (ASPP) module, followed by the proposed contextual scale interaction (CSI) module, and the scale adaptation (SA) module. Specifically, first, for each spatial position, we enable context interaction among different scales through scale-aware non-local operations across the scales, \ie, CSI module, which facilitates the generation of flexible mixed receptive fields, instead of a traditional flat one. Second, the scale adaptation module (SA) explicitly and softly selects the suitable scale for each spatial position and each channel. Ablation studies demonstrate the effectiveness of the proposed modules. We achieve state-of-the-art performance on three scene parsing benchmarks Cityscapes, ADE20K and LIP.

  Access Model/Code and Paper
Relation-Aware Global Attention

Apr 05, 2019
Zhizheng Zhang, Cuiling Lan, Wenjun Zeng, Xin Jin, Zhibo Chen

Attention mechanism aims to increase the representation power by focusing on important features and suppressing unnecessary ones. For convolutional neural networks (CNNs), attention is typically learned with local convolutions, which ignores the global information and the hidden relation. How to efficiently exploit the long-range context to globally learn attention is underexplored. In this paper, we propose an effective Relation-Aware Global Attention (RGA) module for CNNs to fully exploit the global correlations to infer the attention. Specifically, when computing the attention at a feature position, in order to grasp information of global scope, we propose to stack the relations, i.e., its pairwise correlations/affinities with all the feature positions, and the feature itself together for learning the attention with convolutional operations. Given an intermediate feature map, we have validated the effectiveness of this design across both the spatial and channel dimensions. When applied to the task of person re-identification, our model achieves the state-of-the-art performance. Extensive ablation studies demonstrate that our RGA can significantly enhance the feature representation power. We further demonstrate the general applicability of RGA to vision tasks by applying it to the scene segmentation and image classification tasks resulting in consistent performance improvement.

  Access Model/Code and Paper