Models, code, and papers for "Xiaohui Shen":

Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark

Apr 05, 2018
Xiaodan Liang, Ke Gong, Xiaohui Shen, Liang Lin

Human parsing and pose estimation have recently received considerable interest due to their substantial application potentials. However, the existing datasets have limited numbers of images and annotations and lack a variety of human appearances and coverage of challenging cases in unconstrained environments. In this paper, we introduce a new benchmark named "Look into Person (LIP)" that provides a significant advancement in terms of scalability, diversity, and difficulty, which are crucial for future developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19 semantic part labels and 16 body joints, which are captured from a broad range of viewpoints, occlusions, and background complexities. Using these rich annotations, we perform detailed analyses of the leading human parsing and pose estimation approaches, thereby obtaining insights into the successes and failures of these methods. To further explore and take advantage of the semantic correlation of these two tasks, we propose a novel joint human parsing and pose estimation network to explore efficient context modeling, which can simultaneously predict parsing and pose with extremely high quality. Furthermore, we simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. The dataset, code and models are available at

* We proposed the most comprehensive dataset around the world for human-centric analysis! (Accepted By T-PAMI 2018) The dataset, code and models are available at . arXiv admin note: substantial text overlap with arXiv:1703.05446 

  Click for Model/Code and Paper
Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

Jul 28, 2017
Ke Gong, Xiaodan Liang, Dongyu Zhang, Xiaohui Shen, Liang Lin

Human parsing has recently attracted a lot of research interests due to its huge application potentials. However existing datasets have limited number of images and annotations, and lack the variety of human appearances and the coverage of challenging cases in unconstrained environment. In this paper, we introduce a new benchmark "Look into Person (LIP)" that makes a significant advance in terms of scalability, diversity and difficulty, a contribution that we feel is crucial for future developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19 semantic part labels, which are captured from a wider range of viewpoints, occlusions and background complexity. Given these rich annotations we perform detailed analyses of the leading human parsing approaches, gaining insights into the success and failures of these methods. Furthermore, in contrast to the existing efforts on improving the feature discriminative capability, we solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into parsing results without resorting to extra supervision (i.e., no need for specifically labeling human joints in model training). Our self-supervised learning framework can be injected into any advanced neural networks to help incorporate rich high-level knowledge regarding human joints from a global perspective and improve the parsing results. Extensive evaluations on our LIP and the public PASCAL-Person-Part dataset demonstrate the superiority of our method.

* Accepted to appear in CVPR 2017 

  Click for Model/Code and Paper
Semantic Object Parsing with Graph LSTM

Mar 23, 2016
Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, Shuicheng Yan

By taking the semantic object parsing task as an exemplar application scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network, which is the generalization of LSTM from sequential data or multi-dimensional data to general graph-structured data. Particularly, instead of evenly and fixedly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each arbitrary-shaped superpixel as a semantically consistent node, and adaptively construct an undirected graph for each image, where the spatial relations of the superpixels are naturally used as edges. Constructed on such an adaptive graph topology, the Graph LSTM is more naturally aligned with the visual patterns in the image (e.g., object boundaries or appearance similarities) and provides a more economical information propagation route. Furthermore, for each optimization step over Graph LSTM, we propose to use a confidence-driven scheme to update the hidden and memory states of nodes progressively till all nodes are updated. In addition, for each node, the forgets gates are adaptively learned to capture different degrees of semantic correlation with neighboring nodes. Comprehensive evaluations on four diverse semantic object parsing datasets well demonstrate the significant superiority of our Graph LSTM over other state-of-the-art solutions.

* 18 pages 

  Click for Model/Code and Paper
A Modulation Module for Multi-task Learning with Applications in Image Retrieval

Sep 05, 2018
Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang, Ying Wu

Multi-task learning has been widely adopted in many computer vision tasks to improve overall computation efficiency or boost the performance of individual tasks, under the assumption that those tasks are correlated and complementary to each other. However, the relationships between the tasks are complicated in practice, especially when the number of involved tasks scales up. When two tasks are of weak relevance, they may compete or even distract each other during joint training of shared parameters, and as a consequence undermine the learning of all the tasks. This will raise destructive interference which decreases learning efficiency of shared parameters and lead to low quality loss local optimum w.r.t. shared parameters. To address the this problem, we propose a general modulation module, which can be inserted into any convolutional neural network architecture, to encourage the coupling and feature sharing of relevant tasks while disentangling the learning of irrelevant tasks with minor parameters addition. Equipped with this module, gradient directions from different tasks can be enforced to be consistent for those shared parameters, which benefits multi-task joint training. The module is end-to-end learnable without ad-hoc design for specific tasks, and can naturally handle many tasks at the same time. We apply our approach on two retrieval tasks, face retrieval on the CelebA dataset [1] and product retrieval on the UT-Zappos50K dataset [2, 3], and demonstrate its advantage over other multi-task learning methods in both accuracy and storage efficiency.

* To appear in ECCV 2018 

  Click for Model/Code and Paper
Concept Mask: Large-Scale Segmentation from Semantic Concepts

Aug 18, 2018
Yufei Wang, Zhe Lin, Xiaohui Shen, Jianming Zhang, Scott Cohen

Existing works on semantic segmentation typically consider a small number of labels, ranging from tens to a few hundreds. With a large number of labels, training and evaluation of such task become extremely challenging due to correlation between labels and lack of datasets with complete annotations. We formulate semantic segmentation as a problem of image segmentation given a semantic concept, and propose a novel system which can potentially handle an unlimited number of concepts, including objects, parts, stuff, and attributes. We achieve this using a weakly and semi-supervised framework leveraging multiple datasets with different levels of supervision. We first train a deep neural network on a 6M stock image dataset with only image-level labels to learn visual-semantic embedding on 18K concepts. Then, we refine and extend the embedding network to predict an attention map, using a curated dataset with bounding box annotations on 750 concepts. Finally, we train an attention-driven class agnostic segmentation network using an 80-category fully annotated dataset. We perform extensive experiments to validate that the proposed system performs competitively to the state of the art on fully supervised concepts, and is capable of producing accurate segmentations for weakly learned and unseen concepts.

* Accepted to ECCV18 

  Click for Model/Code and Paper
Towards Interpretable Face Recognition

May 02, 2018
Bangjie Yin, Luan Tran, Haoxiang Li, Xiaohui Shen, Xiaoming Liu

Deep CNNs have been pushing the frontier of visual recognition over past years. Besides recognition accuracy, strong demands in understanding deep CNNs in the research community motivate developments of tools to dissect pre-trained models to visualize how they make predictions. Recent works further push the interpretability in the network learning stage to learn more meaningful representations. In this work, focusing on a specific area of visual recognition, we report our efforts towards interpretable face recognition. We propose a spatial activation diversity loss to learn more structured face representations. By leveraging the structure, we further design a feature activation diversity loss to push the interpretable representations to be discriminative and robust to occlusions. We demonstrate on three face recognition benchmarks that our proposed method is able to improve face recognition accuracy with easily interpretable face representations.

* 16 pages, 10 figures, 6 tables, ECCV 2018 under review 

  Click for Model/Code and Paper
Learning to Detect Multiple Photographic Defects

Mar 08, 2018
Ning Yu, Xiaohui Shen, Zhe Lin, Radomir Mech, Connelly Barnes

In this paper, we introduce the problem of simultaneously detecting multiple photographic defects. We aim at detecting the existence, severity, and potential locations of common photographic defects related to color, noise, blur and composition. The automatic detection of such defects could be used to provide users with suggestions for how to improve photos without the need to laboriously try various correction methods. Defect detection could also help users select photos of higher quality while filtering out those with severe defects in photo curation and summarization. To investigate this problem, we collected a large-scale dataset of user annotations on seven common photographic defects, which allows us to evaluate algorithms by measuring their consistency with human judgments. Our new dataset enables us to formulate the problem as a multi-task learning problem and train a multi-column deep convolutional neural network (CNN) to simultaneously predict the severity of all the defects. Unlike some existing single-defect estimation methods that rely on low-level statistics and may fail in many cases on natural photographs, our model is able to understand image contents and quality at a higher level. As a result, in our experiments, we show that our model has predictions with much higher consistency with human judgments than low-level methods as well as several baseline CNN models. Our model also performs better than an average human from our user study.

* Accepted to WACV'18 

  Click for Model/Code and Paper
Top-down Neural Attention by Excitation Backprop

Aug 01, 2016
Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Stan Sclaroff

We aim to model the top-down attention of a Convolutional Neural Network (CNN) classifier for generating task-specific attention maps. Inspired by a top-down human visual attention model, we propose a new backpropagation scheme, called Excitation Backprop, to pass along top-down signals downwards in the network hierarchy via a probabilistic Winner-Take-All process. Furthermore, we introduce the concept of contrastive attention to make the top-down attention maps more discriminative. In experiments, we demonstrate the accuracy and generalizability of our method in weakly supervised localization tasks on the MS COCO, PASCAL VOC07 and ImageNet datasets. The usefulness of our method is further validated in the text-to-region association task. On the Flickr30k Entities dataset, we achieve promising performance in phrase localization by leveraging the top-down attention of a CNN model that has been trained on weakly labeled web images.

* A shorter version of this paper is accepted at ECCV, 2016 (oral) 

  Click for Model/Code and Paper
Photo Aesthetics Ranking Network with Attributes and Content Adaptation

Jul 27, 2016
Shu Kong, Xiaohui Shen, Zhe Lin, Radomir Mech, Charless Fowlkes

Real-world applications could benefit from the ability to automatically generate a fine-grained ranking of photo aesthetics. However, previous methods for image aesthetics analysis have primarily focused on the coarse, binary categorization of images into high- or low-aesthetic categories. In this work, we propose to learn a deep convolutional neural network to rank photo aesthetics in which the relative ranking of photo aesthetics are directly modeled in the loss function. Our model incorporates joint learning of meaningful photographic attributes and image content information which can help regularize the complicated photo aesthetics rating problem. To train and analyze this model, we have assembled a new aesthetics and attributes database (AADB) which contains aesthetic scores and meaningful attributes assigned to each image by multiple human raters. Anonymized rater identities are recorded across images allowing us to exploit intra-rater consistency using a novel sampling strategy when computing the ranking loss of training image pairs. We show the proposed sampling strategy is very effective and robust in face of subjective judgement of image aesthetics by individuals with different aesthetic tastes. Experiments demonstrate that our unified model can generate aesthetic rankings that are more consistent with human ratings. To further validate our model, we show that by simply thresholding the estimated aesthetic scores, we are able to achieve state-or-the-art classification performance on the existing AVA dataset benchmark.

  Click for Model/Code and Paper
Automatic Content-Aware Color and Tone Stylization

Nov 12, 2015
Joon-Young Lee, Kalyan Sunkavalli, Zhe Lin, Xiaohui Shen, In So Kweon

We introduce a new technique that automatically generates diverse, visually compelling stylizations for a photograph in an unsupervised manner. We achieve this by learning style ranking for a given input using a large photo collection and selecting a diverse subset of matching styles for final style transfer. We also propose a novel technique that transfers the global color and tone of the chosen exemplars to the input photograph while avoiding the common visual artifacts produced by the existing style transfer methods. Together, our style selection and transfer techniques produce compelling, artifact-free results on a wide range of input photographs, and a user study shows that our results are preferred over other techniques.

* 12 pages, 11 figures 

  Click for Model/Code and Paper
LCNN: Low-level Feature Embedded CNN for Salient Object Detection

Aug 17, 2015
Hongyang Li, Huchuan Lu, Zhe Lin, Xiaohui Shen, Brian Price

In this paper, we propose a novel deep neural network framework embedded with low-level features (LCNN) for salient object detection in complex images. We utilise the advantage of convolutional neural networks to automatically learn the high-level features that capture the structured information and semantic context in the image. In order to better adapt a CNN model into the saliency task, we redesign the network architecture based on the small-scale datasets. Several low-level features are extracted, which can effectively capture contrast and spatial information in the salient regions, and incorporated to compensate with the learned high-level features at the output of the last fully connected layer. The concatenated feature vector is further fed into a hinge-loss SVM detector in a joint discriminative learning manner and the final saliency score of each region within the bounding box is obtained by the linear combination of the detector's weights. Experiments on three challenging benchmark (MSRA-5000, PASCAL-S, ECCSD) demonstrate our algorithm to be effective and superior than most low-level oriented state-of-the-arts in terms of P-R curves, F-measure and mean absolute errors.

  Click for Model/Code and Paper
Inner and Inter Label Propagation: Salient Object Detection in the Wild

May 27, 2015
Hongyang Li, Huchuan Lu, Zhe Lin, Xiaohui Shen, Brian Price

In this paper, we propose a novel label propagation based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a 3-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark datasets with pixel-wise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.

* The full version of the TIP 2015 publication 

  Click for Model/Code and Paper
Graphonomy: Universal Human Parsing via Graph Transfer Learning

Apr 09, 2019
Ke Gong, Yiming Gao, Xiaodan Liang, Xiaohui Shen, Meng Wang, Liang Lin

Prior highly-tuned human parsing models tend to fit towards each dataset in a specific domain or with discrepant label granularity, and can hardly be adapted to other human parsing tasks without extensive re-training. In this paper, we aim to learn a single universal human parsing model that can tackle all kinds of human parsing needs by unifying label annotations from different domains or at various levels of granularity. This poses many fundamental learning challenges, e.g. discovering underlying semantic structures among different label granularity, performing proper transfer learning across different image domains, and identifying and utilizing label redundancies across related tasks. To address these challenges, we propose a new universal human parsing agent, named "Graphonomy", which incorporates hierarchical graph transfer learning upon the conventional parsing network to encode the underlying label semantic structures and propagate relevant semantic information. In particular, Graphonomy first learns and propagates compact high-level graph representation among the labels within one dataset via Intra-Graph Reasoning, and then transfers semantic information across multiple datasets via Inter-Graph Transfer. Various graph transfer dependencies (\eg, similarity, linguistic knowledge) between different datasets are analyzed and encoded to enhance graph transfer capability. By distilling universal semantic graph representation to each specific task, Graphonomy is able to predict all levels of parsing labels in one system without piling up the complexity. Experimental results show Graphonomy effectively achieves the state-of-the-art results on three human parsing benchmarks as well as advantageous universal human parsing performance.

* Accepted to CVPR 2019. The Code is available at 

  Click for Model/Code and Paper
Progressive Attention Networks for Visual Attribute Prediction

Aug 06, 2018
Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiaohui Shen, Bohyung Han

We propose a novel attention model that can accurately attends to target objects of various scales and shapes in images. The model is trained to gradually suppress irrelevant regions in an input image via a progressive attentive process over multiple layers of a convolutional neural network. The attentive process in each layer determines whether to pass or block features at certain spatial locations for use in the subsequent layers. The proposed progressive attention mechanism works well especially when combined with hard attention. We further employ local contexts to incorporate neighborhood features of each location and estimate a better attention probability map. The experiments on synthetic and real datasets show that the proposed attention networks outperform traditional attention methods in visual attribute prediction tasks.

* BMVC 2018 accepted paper 

  Click for Model/Code and Paper
Skeleton Key: Image Captioning by Skeleton-Attribute Decomposition

Apr 23, 2017
Yufei Wang, Zhe Lin, Xiaohui Shen, Scott Cohen, Garrison W. Cottrell

Recently, there has been a lot of interest in automatically generating descriptions for an image. Most existing language-model based approaches for this task learn to generate an image description word by word in its original word order. However, for humans, it is more natural to locate the objects and their relationships first, and then elaborate on each object, describing notable attributes. We present a coarse-to-fine method that decomposes the original image description into a skeleton sentence and its attributes, and generates the skeleton sentence and attribute phrases separately. By this decomposition, our method can generate more accurate and novel descriptions than the previous state-of-the-art. Experimental results on the MS-COCO and a larger scale Stock3M datasets show that our algorithm yields consistent improvements across different evaluation metrics, especially on the SPICE metric, which has much higher correlation with human ratings than the conventional metrics. Furthermore, our algorithm can generate descriptions with varied length, benefiting from the separate control of the skeleton and attributes. This enables image description generation that better accommodates user preferences.

* Accepted by CVPR 2017 

  Click for Model/Code and Paper
Semantic Object Parsing with Local-Global Long Short-Term Memory

Nov 14, 2015
Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, Shuicheng Yan

Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods often leverage the contextual information through post-processing predicted confidence maps. In this work, we propose a novel deep Local-Global Long Short-Term Memory (LG-LSTM) architecture to seamlessly incorporate short-distance and long-distance spatial dependencies into the feature learning over all pixel positions. In each LG-LSTM layer, local guidance from neighboring positions and global guidance from the whole image are imposed on each position to better exploit complex local and global contextual information. Individual LSTMs for distinct spatial dimensions are also utilized to intrinsically capture various spatial layouts of semantic parts in the images, yielding distinct hidden and memory cells of each position for each dimension. In our parsing approach, several LG-LSTM layers are stacked and appended to the intermediate convolutional layers to directly enhance visual features, allowing network parameters to be learned in an end-to-end way. The long chains of sequential computation by stacked LG-LSTM layers also enable each pixel to sense a much larger region for inference benefiting from the memorization of previous dependencies in all positions along all dimensions. Comprehensive evaluations on three public datasets well demonstrate the significant superiority of our LG-LSTM over other state-of-the-art methods.

* 10 pages 

  Click for Model/Code and Paper
Proposal-free Network for Instance-level Object Segmentation

Sep 10, 2015
Xiaodan Liang, Yunchao Wei, Xiaohui Shen, Jianchao Yang, Liang Lin, Shuicheng Yan

Instance-level object segmentation is an important yet under-explored task. The few existing studies are almost all based on region proposal methods to extract candidate segments and then utilize object classification to produce final results. Nonetheless, generating accurate region proposals itself is quite challenging. In this work, we propose a Proposal-Free Network (PFN ) to address the instance-level object segmentation problem, which outputs the instance numbers of different categories and the pixel-level information on 1) the coordinates of the instance bounding box each pixel belongs to, and 2) the confidences of different categories for each pixel, based on pixel-to-pixel deep convolutional neural network. All the outputs together, by using any off-the-shelf clustering method for simple post-processing, can naturally generate the ultimate instance-level object segmentation results. The whole PFN can be easily trained in an end-to-end way without the requirement of a proposal generation stage. Extensive evaluations on the challenging PASCAL VOC 2012 semantic segmentation benchmark demonstrate that the proposed PFN solution well beats the state-of-the-arts for instance-level object segmentation. In particular, the $AP^r$ over 20 classes at 0.5 IoU reaches 58.7% by PFN, significantly higher than 43.8% and 46.3% by the state-of-the-art algorithms, SDS [9] and [16], respectively.

* 14 pages 

  Click for Model/Code and Paper
Recurrent Multimodal Interaction for Referring Image Segmentation

Aug 04, 2017
Chenxi Liu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu, Alan Yuille

In this paper we are interested in the problem of image segmentation given natural language descriptions, i.e. referring expressions. Existing works tackle this problem by first modeling images and sentences independently and then segment images by combining these two types of representations. We argue that learning word-to-image interaction is more native in the sense of jointly modeling two modalities for the image segmentation task, and we propose convolutional multimodal LSTM to encode the sequential interactions between individual words, visual information, and spatial information. We show that our proposed model outperforms the baseline model on benchmark datasets. In addition, we analyze the intermediate output of the proposed multimodal LSTM approach and empirically explain how this approach enforces a more effective word-to-image interaction.

* To appear in ICCV 2017. See for code and supplementary material 

  Click for Model/Code and Paper
Interpretable Structure-Evolving LSTM

Mar 08, 2017
Xiaodan Liang, Liang Lin, Xiaohui Shen, Jiashi Feng, Shuicheng Yan, Eric P. Xing

This paper develops a general framework for learning interpretable data representation via Long Short-Term Memory (LSTM) recurrent neural networks over hierarchal graph structures. Instead of learning LSTM models over the pre-fixed structures, we propose to further learn the intermediate interpretable multi-level graph structures in a progressive and stochastic way from data during the LSTM network optimization. We thus call this model the structure-evolving LSTM. In particular, starting with an initial element-level graph representation where each node is a small data element, the structure-evolving LSTM gradually evolves the multi-level graph representations by stochastically merging the graph nodes with high compatibilities along the stacked LSTM layers. In each LSTM layer, we estimate the compatibility of two connected nodes from their corresponding LSTM gate outputs, which is used to generate a merging probability. The candidate graph structures are accordingly generated where the nodes are grouped into cliques with their merging probabilities. We then produce the new graph structure with a Metropolis-Hasting algorithm, which alleviates the risk of getting stuck in local optimums by stochastic sampling with an acceptance probability. Once a graph structure is accepted, a higher-level graph is then constructed by taking the partitioned cliques as its nodes. During the evolving process, representation becomes more abstracted in higher-levels where redundant information is filtered out, allowing more efficient propagation of long-range data dependencies. We evaluate the effectiveness of structure-evolving LSTM in the application of semantic object parsing and demonstrate its advantage over state-of-the-art LSTM models on standard benchmarks.

* To appear in CVPR 2017 as a spotlight paper 

  Click for Model/Code and Paper
Joint Object and Part Segmentation using Deep Learned Potentials

May 01, 2015
Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, Alan Yuille

Segmenting semantic objects from images and parsing them into their respective semantic parts are fundamental steps towards detailed object understanding in computer vision. In this paper, we propose a joint solution that tackles semantic object and part segmentation simultaneously, in which higher object-level context is provided to guide part segmentation, and more detailed part-level localization is utilized to refine object segmentation. Specifically, we first introduce the concept of semantic compositional parts (SCP) in which similar semantic parts are grouped and shared among different objects. A two-channel fully convolutional network (FCN) is then trained to provide the SCP and object potentials at each pixel. At the same time, a compact set of segments can also be obtained from the SCP predictions of the network. Given the potentials and the generated segments, in order to explore long-range context, we finally construct an efficient fully connected conditional random field (FCRF) to jointly predict the final object and part labels. Extensive evaluation on three different datasets shows that our approach can mutually enhance the performance of object and part segmentation, and outperforms the current state-of-the-art on both tasks.

  Click for Model/Code and Paper