Models, code, and papers for "Xin Li":

All Roads Lead To Rome

Mar 10, 2011
Xin Li

This short article presents a class of projection-based solution algorithms to the problem considered in the pioneering work on compressed sensing - perfect reconstruction of a phantom image from 22 radial lines in the frequency domain. Under the framework of projection-based image reconstruction, we will show experimentally that several old and new tools of nonlinear filtering (including Perona-Malik diffusion, nonlinear diffusion, Translation-Invariant thresholding and SA-DCT thresholding) all lead to perfect reconstruction of the phantom image.

* IEEE SPM'2011 as a Column Paper for DSP Tips&Tricks 
* 5 pages, 1 figure, submitted 

  Access Model/Code and Paper
A Fast Training Algorithm for Deep Convolutional Fuzzy Systems with Application to Stock Index Prediction

Dec 07, 2018
Li-Xin Wang

A deep convolutional fuzzy system (DCFS) on a high-dimensional input space is a multi-layer connection of many low-dimensional fuzzy systems, where the input variables to the low-dimensional fuzzy systems are selected through a moving window (a convolution operator) across the input spaces of the layers. To design the DCFS based on input-output data pairs, we propose a bottom-up layer-by-layer scheme. Specifically, by viewing each of the first-layer fuzzy systems as a weak estimator of the output based only on a very small portion of the input variables, we can design these fuzzy systems using the WM Method. After the first-layer fuzzy systems are designed, we pass the data through the first layer and replace the inputs in the original data set by the corresponding outputs of the first layer to form a new data set, then we design the second-layer fuzzy systems based on this new data set in the same way as designing the first-layer fuzzy systems. Repeating this process we design the whole DCFS. Since the WM Method requires only one-pass of the data, this training algorithm for the DCFS is very fast. We apply the DCFS model with the training algorithm to predict a synthetic chaotic plus random time-series and the real Hang Seng Index of the Hong Kong stock market.

  Access Model/Code and Paper
Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics

Oct 26, 2017
Xin Li, Fuxin Li

Deep learning has greatly improved visual recognition in recent years. However, recent research has shown that there exist many adversarial examples that can negatively impact the performance of such an architecture. This paper focuses on detecting those adversarial examples by analyzing whether they come from the same distribution as the normal examples. Instead of directly training a deep neural network to detect adversarials, a much simpler approach was proposed based on statistics on outputs from convolutional layers. A cascade classifier was designed to efficiently detect adversarials. Furthermore, trained from one particular adversarial generating mechanism, the resulting classifier can successfully detect adversarials from a completely different mechanism as well. The resulting classifier is non-subdifferentiable, hence creates a difficulty for adversaries to attack by using the gradient of the classifier. After detecting adversarial examples, we show that many of them can be recovered by simply performing a small average filter on the image. Those findings should lead to more insights about the classification mechanisms in deep convolutional neural networks.

* Published in ICCV 2017 

  Access Model/Code and Paper
Gaussian-Chain Filters for Heavy-Tailed Noise with Application to Detecting Big Buyers and Big Sellers in Stock Market

May 09, 2014
Li-Xin Wang

We propose a new heavy-tailed distribution --- Gaussian-Chain (GC) distribution, which is inspirited by the hierarchical structures prevailing in social organizations. We determine the mean, variance and kurtosis of the Gaussian-Chain distribution to show its heavy-tailed property, and compute the tail distribution table to give specific numbers showing how heavy is the heavy-tails. To filter out the heavy-tailed noise, we construct two filters --- 2nd and 3rd-order GC filters --- based on the maximum likelihood principle. Simulation results show that the GC filters perform much better than the benchmark least-squares algorithm when the noise is heavy-tail distributed. Using the GC filters, we propose a trading strategy, named Ride-the-Mood, to follow the mood of the market by detecting the actions of the big buyers and the big sellers in the market based on the noisy, heavy-tailed price data. Application of the Ride-the-Mood strategy to five blue-chip Hong Kong stocks over the recent two-year period from April 2, 2012 to March 31, 2014 shows that their returns are higher than the returns of the benchmark Buy-and-Hold strategy and the Hang Seng Index Fund.

  Access Model/Code and Paper
Shapley Interpretation and Activation in Neural Networks

Sep 17, 2019
Yadong Li, Xin Cui

We propose a novel Shapley value approach to help address neural networks' interpretability and "vanishing gradient" problems. Our method is based on an accurate analytical approximation to the Shapley value of a neuron with ReLU activation. This analytical approximation admits a linear propagation of relevance across neural network layers, resulting in a simple, fast and sensible interpretation of neural networks' decision making process. We then derived a globally continuous and non-vanishing Shapley gradient, which can replace the conventional gradient in training neural network layers with ReLU activation, and leading to better training performance. We further derived a Shapley Activation (SA) function, which is a close approximation to ReLU but features the Shapley gradient. The SA is easy to implement in existing machine learning frameworks. Numerical tests show that SA consistently outperforms ReLU in training convergence, accuracy and stability.

* 11 pages, 7 figures 

  Access Model/Code and Paper
STN-Homography: estimate homography parameters directly

Jun 06, 2019
Qiang Zhou, Xin Li

In this paper, we introduce the STN-Homography model to directly estimate the homography matrix between image pair. Different most CNN-based homography estimation methods which use an alternative 4-point homography parameterization, we use prove that, after coordinate normalization, the variance of elements of coordinate normalized $3\times3$ homography matrix is very small and suitable to be regressed well with CNN. Based on proposed STN-Homography, we use a hierarchical architecture which stacks several STN-Homography models and successively reduce the estimation error. Effectiveness of the proposed method is shown through experiments on MSCOCO dataset, in which it significantly outperforms the state-of-the-art. The average processing time of our hierarchical STN-Homography with 1 stage is only 4.87 ms on the GPU, and the processing time for hierarchical STN-Homography with 3 stages is 17.85 ms. The code will soon be open sourced.

  Access Model/Code and Paper
Superimposition-guided Facial Reconstruction from Skull

Sep 28, 2018
Celong Liu, Xin Li

We develop a new algorithm to perform facial reconstruction from a given skull. This technique has forensic application in helping the identification of skeletal remains when other information is unavailable. Unlike most existing strategies that directly reconstruct the face from the skull, we utilize a database of portrait photos to create many face candidates, then perform a superimposition to get a well matched face, and then revise it according to the superimposition. To support this pipeline, we build an effective autoencoder for image-based facial reconstruction, and a generative model for constrained face inpainting. Our experiments have demonstrated that the proposed pipeline is stable and accurate.

* 14 pages; 14 figures 

  Access Model/Code and Paper
JigsawNet: Shredded Image Reassembly using Convolutional Neural Network and Loop-based Composition

Sep 11, 2018
Canyu Le, Xin Li

This paper proposes a novel algorithm to reassemble an arbitrarily shredded image to its original status. Existing reassembly pipelines commonly consist of a local matching stage and a global compositions stage. In the local stage, a key challenge in fragment reassembly is to reliably compute and identify correct pairwise matching, for which most existing algorithms use handcrafted features, and hence, cannot reliably handle complicated puzzles. We build a deep convolutional neural network to detect the compatibility of a pairwise stitching, and use it to prune computed pairwise matches. To improve the network efficiency and accuracy, we transfer the calculation of CNN to the stitching region and apply a boost training strategy. In the global composition stage, we modify the commonly adopted greedy edge selection strategies to two new loop closure based searching algorithms. Extensive experiments show that our algorithm significantly outperforms existing methods on solving various puzzles, especially those challenging ones with many fragment pieces.

  Access Model/Code and Paper
Perceptually Optimized Generative Adversarial Network for Single Image Dehazing

May 03, 2018
Yixin Du, Xin Li

Existing approaches towards single image dehazing including both model-based and learning-based heavily rely on the estimation of so-called transmission maps. Despite its conceptual simplicity, using transmission maps as an intermediate step often makes it more difficult to optimize the perceptual quality of reconstructed images. To overcome this weakness, we propose a direct deep learning approach toward image dehazing bypassing the step of transmission map estimation and facilitating end-to-end perceptual optimization. Our technical contributions are mainly three-fold. First, based on the analogy between dehazing and denoising, we propose to directly learn a nonlinear mapping from the space of degraded images to that of haze-free ones via recursive deep residual learning; Second, inspired by the success of generative adversarial networks (GAN), we propose to optimize the perceptual quality of dehazed images by introducing a discriminator and a loss function adaptive to hazy conditions; Third, we propose to remove notorious halo-like artifacts at large scene depth discontinuities by a novel application of guided filtering. Extensive experimental results have shown that the subjective qualities of dehazed images by the proposed perceptually optimized GAN (POGAN) are often more favorable than those by existing state-of-the-art approaches especially when hazy condition varies.

  Access Model/Code and Paper
What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-based Evolutionary Multi-Objective Optimisation

Sep 08, 2017
Miqing Li, Xin Yao

The quality of solution sets generated by decomposition-based evolutionary multiobjective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often lead to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this paper, we propose an approach to adapt the weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating five parts in the weight adaptation --- weight generation, weight addition, weight deletion, archive maintenance, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerated, 6) the badly-scaled, and 7) the high-dimensional.

* 22 pages, 19 figures 

  Access Model/Code and Paper
Prune the Convolutional Neural Networks with Sparse Shrink

Aug 08, 2017
Xin Li, Changsong Liu

Nowadays, it is still difficult to adapt Convolutional Neural Network (CNN) based models for deployment on embedded devices. The heavy computation and large memory footprint of CNN models become the main burden in real application. In this paper, we propose a "Sparse Shrink" algorithm to prune an existing CNN model. By analyzing the importance of each channel via sparse reconstruction, the algorithm is able to prune redundant feature maps accordingly. The resulting pruned model thus directly saves computational resource. We have evaluated our algorithm on CIFAR-100. As shown in our experiments, we can reduce 56.77% parameters and 73.84% multiplication in total with only minor decrease in accuracy. These results have demonstrated the effectiveness of our "Sparse Shrink" algorithm.

  Access Model/Code and Paper
Weighted Low Rank Approximation for Background Estimation Problems

Jul 04, 2017
Aritra Dutta, Xin Li

Classical principal component analysis (PCA) is not robust to the presence of sparse outliers in the data. The use of the $\ell_1$ norm in the Robust PCA (RPCA) method successfully eliminates the weakness of PCA in separating the sparse outliers. In this paper, by sticking a simple weight to the Frobenius norm, we propose a weighted low rank (WLR) method to avoid the often computationally expensive algorithms relying on the $\ell_1$ norm. As a proof of concept, a background estimation model has been presented and compared with two $\ell_1$ norm minimization algorithms. We illustrate that as long as a simple weight matrix is inferred from the data, one can use the weighted Frobenius norm and achieve the same or better performance.

  Access Model/Code and Paper
Dominance Move: A Measure of Comparing Solution Sets in Multiobjective Optimization

Feb 01, 2017
Miqing Li, Xin Yao

One of the most common approaches for multiobjective optimization is to generate a solution set that well approximates the whole Pareto-optimal frontier to facilitate the later decision-making process. However, how to evaluate and compare the quality of different solution sets remains challenging. Existing measures typically require additional problem knowledge and information, such as a reference point or a substituted set of the Pareto-optimal frontier. In this paper, we propose a quality measure, called dominance move (DoM), to compare solution sets generated by multiobjective optimizers. Given two solution sets, DoM measures the minimum sum of move distances for one set to weakly Pareto dominate the other set. DoM can be seen as a natural reflection of the difference between two solutions, capturing all aspects of solution sets' quality, being compliant with Pareto dominance, and does not need any additional problem knowledge and parameters. We present an exact method to calculate the DoM in the biobjective case. We show the necessary condition of constructing the optimal partition for a solution set's minimum move, and accordingly propose an efficient algorithm to recursively calculate the DoM. Finally, DoM is evaluated on several groups of artificial and real test cases as well as by a comparison with two well-established quality measures.

* 23 pages, 10 figures 

  Access Model/Code and Paper
ReHAR: Robust and Efficient Human Activity Recognition

Feb 27, 2018
Xin Li, Mooi Choo Chuah

Designing a scheme that can achieve a good performance in predicting single person activities and group activities is a challenging task. In this paper, we propose a novel robust and efficient human activity recognition scheme called ReHAR, which can be used to handle single person activities and group activities prediction. First, we generate an optical flow image for each video frame. Then, both video frames and their corresponding optical flow images are fed into a Single Frame Representation Model to generate representations. Finally, an LSTM is used to pre- dict the final activities based on the generated representations. The whole model is trained end-to-end to allow meaningful representations to be generated for the final activity recognition. We evaluate ReHAR using two well-known datasets: the NCAA Basketball Dataset and the UCFSports Action Dataset. The experimental results show that the pro- posed ReHAR achieves a higher activity recognition accuracy with an order of magnitude shorter computation time compared to the state-of-the-art methods.

* Accepted by WACV 2018 

  Access Model/Code and Paper
Toward Tag-free Aspect Based Sentiment Analysis: A Multiple Attention Network Approach

Mar 22, 2020
Yao Qiang, Xin Li, Dongxiao Zhu

Existing aspect based sentiment analysis (ABSA) approaches leverage various neural network models to extract the aspect sentiments via learning aspect-specific feature representations. However, these approaches heavily rely on manual tagging of user reviews according to the predefined aspects as the input, a laborious and time-consuming process. Moreover, the underlying methods do not explain how and why the opposing aspect level polarities in a user review lead to the overall polarity. In this paper, we tackle these two problems by designing and implementing a new Multiple-Attention Network (MAN) approach for more powerful ABSA without the need for aspect tags using two new tag-free data sets crawled directly from TripAdvisor ({}). With the Self- and Position-Aware attention mechanism, MAN is capable of extracting both aspect level and overall sentiments from the text reviews using the aspect level and overall customer ratings, and it can also detect the vital aspect(s) leading to the overall sentiment polarity among different aspects via a new aspect ranking scheme. We carry out extensive experiments to demonstrate the strong performance of MAN compared to other state-of-the-art ABSA approaches and the explainability of our approach by visualizing and interpreting attention weights in case studies.

* to appear in the proceedings of IJCNN'20 

  Access Model/Code and Paper
Online Residential Demand Response via Contextual Multi-Armed Bandits

Mar 07, 2020
Xin Chen, Yutong Nie, Na Li

Residential load demands have huge potential to be exploited to enhance the efficiency and reliability of power system operation through demand response (DR) programs. This paper studies the strategies to select the right customers for residential DR from the perspective of load service entities (LSEs). One of the main challenges to implement residential DR is that customer responses to the incentives are uncertain and unknown, which are influenced by various personal and environmental factors. To address this challenge, this paper employs the contextual multi-armed bandit (CMAB) method to model the optimal customer selection problem with uncertainty. Based on Thompson sampling framework, an online learning and decision-making algorithm is proposed to learn customer behaviors and select appropriate customers for load reduction. This algorithm takes the contextual information into consideration and is applicable to complicated DR settings. Numerical simulations are performed to demonstrate the efficiency and learning effectiveness of the proposed algorithm.

  Access Model/Code and Paper
How to Evaluate Solutions in Pareto-based Search-Based Software Engineering? A Critical Review and Methodological Guidance

Feb 27, 2020
Miqing Li, Tao Chen, Xin Yao

With modern requirements, there is an increasing tendancy of considering multiple objectives/criteria simultaneously in many Software Engineering (SE) scenarios. Such a multi-objective optimization scenario comes with an important issue --- how to evaluate the outcome of optimization algorithms, which typically is a set of incomparable solutions (i.e., being Pareto non-dominated to each other). This issue can be challenging for the SE community, particularly for practitioners of Search-Based SE (SBSE). On one hand, multiobjective optimization may still be relatively new to SE/SBSE researchers, who may not be able to identify right evaluation methods for their problems. On the other hand, simply following the evaluation methods for general multiobjective optimisation problems may not be appropriate for specific SE problems, especially when the problem nature or decision maker's preferences are explicitly/implicitly available. This has been well echoed in the literature by various inappropriate/inadequate selection and inaccurate/misleading uses of evaluation methods. In this paper, we carry out a critical review of quality evaluation for multiobjective optimization in SBSE. We survey 717 papers published between 2009 and 2019 from 36 venues in 7 repositories, and select 97 prominent studies, through which we identify five important but overlooked issues in the area. We then conduct an in-depth analysis of quality evaluation indicators and general situations in SBSE, which, together with the identified issues, enables us to provide a methodological guidance to selecting and using evaluation methods in different SBSE scenarios.

* submitted, 7 figures and 5 tables 

  Access Model/Code and Paper
Searching for Stage-wise Neural Graphs In the Limit

Dec 30, 2019
Xin Zhou, Dejing Dou, Boyang Li

Search space is a key consideration for neural architecture search. Recently, Xie et al. (2019) found that randomly generated networks from the same distribution perform similarly, which suggests we should search for random graph distributions instead of graphs. We propose graphon as a new search space. A graphon is the limit of Cauchy sequence of graphs and a scale-free probabilistic distribution, from which graphs of different number of nodes can be drawn. By utilizing properties of the graphon space and the associated cut-distance metric, we develop theoretically motivated techniques that search for and scale up small-capacity stage-wise graphs found on small datasets to large-capacity graphs that can handle ImageNet. The scaled stage-wise graphs outperform DenseNet and randomly wired Watts-Strogatz networks, indicating the benefits of graphon theory in NAS applications.

  Access Model/Code and Paper
Joint Demosaicing and Super-Resolution (JDSR): Network Design and Perceptual Optimization

Nov 08, 2019
Xuan Xu, Yanfang, Ye, Xin Li

Image demosaicing and super-resolution are two important tasks in color imaging pipeline. So far they have been mostly independently studied in the open literature of deep learning; little is known about the potential benefit of formulating a joint demosaicing and super-resolution (JDSR) problem. In this paper, we propose an end-to-end optimization solution to the JDSR problem and demonstrate its practical significance in computational imaging. Our technical contributions are mainly two-fold. On network design, we have developed a Densely-connected Squeeze-and-Excitation Residual Network (DSERN) for JDSR. For the first time, we address the issue of spatio-spectral attention for color images and discuss how to achieve better information flow by smooth activation for JDSR. Experimental results have shown moderate PSNR/SSIM gain can be achieved by DSERN over previous naive network architectures. On perceptual optimization, we propose to leverage the latest ideas including relativistic discriminator and pre-excitation perceptual loss function to further improve the visual quality of reconstructed images. Our extensive experiment results have shown that Texture-enhanced Relativistic average Generative Adversarial Network (TRaGAN) can produce both subjectively more pleasant images and objectively lower perceptual distortion scores than standard GAN for JDSR. We have verified the benefit of JDSR to high-quality image reconstruction from real-world Bayer pattern collected by NASA Mars Curiosity.

  Access Model/Code and Paper