Models, code, and papers for "Yiwen Hua":

GPU-Accelerated Mobile Multi-view Style Transfer

Mar 02, 2020
Puneet Kohli, Saravana Gunaseelan, Jason Orozco, Yiwen Hua, Edward Li, Nicolas Dahlquist

An estimated 60% of smartphones sold in 2018 were equipped with multiple rear cameras, enabling a wide variety of 3D-enabled applications such as 3D Photos. The success of 3D Photo platforms (Facebook 3D Photo, Holopix, etc) depend on a steady influx of user generated content. These platforms must provide simple image manipulation tools to facilitate content creation, akin to traditional photo platforms. Artistic neural style transfer, propelled by recent advancements in GPU technology, is one such tool for enhancing traditional photos. However, naively extrapolating single-view neural style transfer to the multi-view scenario produces visually inconsistent results and is prohibitively slow on mobile devices. We present a GPU-accelerated multi-view style transfer pipeline which enforces style consistency between views with on-demand performance on mobile platforms. Our pipeline is modular and creates high quality depth and parallax effects from a stereoscopic image pair.

* 6 pages, 5 figures 

  Access Model/Code and Paper
Holopix50k: A Large-Scale In-the-wild Stereo Image Dataset

Mar 25, 2020
Yiwen Hua, Puneet Kohli, Pritish Uplavikar, Anand Ravi, Saravana Gunaseelan, Jason Orozco, Edward Li

With the mass-market adoption of dual-camera mobile phones, leveraging stereo information in computer vision has become increasingly important. Current state-of-the-art methods utilize learning-based algorithms, where the amount and quality of training samples heavily influence results. Existing stereo image datasets are limited either in size or subject variety. Hence, algorithms trained on such datasets do not generalize well to scenarios encountered in mobile photography. We present Holopix50k, a novel in-the-wild stereo image dataset, comprising 49,368 image pairs contributed by users of the Holopix mobile social platform. In this work, we describe our data collection process and statistically compare our dataset to other popular stereo datasets. We experimentally show that using our dataset significantly improves results for tasks such as stereo super-resolution and self-supervised monocular depth estimation. Finally, we showcase practical applications of our dataset to motivate novel works and use cases. The Holopix50k dataset is available at

* Main paper: 17 pages, 7 figures, 3 tables. Supplementary: 11 pages, 7 figures, 4 tables. See for downloading the dataset 

  Access Model/Code and Paper
Densely Connected High Order Residual Network for Single Frame Image Super Resolution

Apr 16, 2018
Yiwen Huang, Ming Qin

Deep convolutional neural networks (DCNN) have been widely adopted for research on super resolution recently, however previous work focused mainly on stacking as many layers as possible in their model, in this paper, we present a new perspective regarding to image restoration problems that we can construct the neural network model reflecting the physical significance of the image restoration process, that is, embedding the a priori knowledge of image restoration directly into the structure of our neural network model, we employed a symmetric non-linear colorspace, the sigmoidal transfer, to replace traditional transfers such as, sRGB, Rec.709, which are asymmetric non-linear colorspaces, we also propose a "reuse plus patch" method to deal with super resolution of different scaling factors, our proposed methods and model show generally superior performance over previous work even though our model was only roughly trained and could still be underfitting the training set.

  Access Model/Code and Paper
A Fully Sequential Methodology for Convolutional Neural Networks

Nov 27, 2018
Yiwen Huang, Rihui Wu, Pinglai Ou

Recent work has shown that the performance of convolutional neural networks could be significantly improved by increasing the depth of the representation. We propose a fully sequential methodology to construct and train extremely deep convolutional neural networks. We first introduce a novel sequential convolutional layer to construct the network. The proposed layer is capable of constructing trainable and highly efficient feedforward networks that consist of thousands of vanilla convolutional layers with rather limited number of parameters. The layer extracts each feature of the produced representation in sequence, allowing feature reuse within the layer. This form of feature reuse introduces in-layer hierarchy to the extracted features which greatly increases the depth of the representation, enabling richer structures to be explored. Furthermore, we employ the progressive growing training method to optimize each module of the network in sequence. This training manner progressively increases the network capacity allowing later modules to be optimized conditioning on prior knowledge from earlier modules. Thus, it encourages long term dependency to be established among each module of the network, which increases the effective depth of networks with skip connections, as well alleviates multiple optimization difficulties for deep networks.

  Access Model/Code and Paper
Aggregating Votes with Local Differential Privacy: Usefulness, Soundness vs. Indistinguishability

Aug 14, 2019
Shaowei Wang, Jiachun Du, Wei Yang, Xinrong Diao, Zichun Liu, Yiwen Nie, Liusheng Huang, Hongli Xu

Voting plays a central role in bringing crowd wisdom to collective decision making, meanwhile data privacy has been a common ethical/legal issue in eliciting preferences from individuals. This work studies the problem of aggregating individual's voting data under the local differential privacy setting, where usefulness and soundness of the aggregated scores are of major concern. One naive approach to the problem is adding Laplace random noises, however, it makes aggregated scores extremely fragile to new types of strategic behaviors tailored to the local privacy setting: data amplification attack and view disguise attack. The data amplification attack means an attacker's manipulation power is amplified by the privacy-preserving procedure when contributing a fraud vote. The view disguise attack happens when an attacker could disguise malicious data as valid private views to manipulate the voting result. In this work, after theoretically quantifying the estimation error bound and the manipulating risk bound of the Laplace mechanism, we propose two mechanisms improving the usefulness and soundness simultaneously: the weighted sampling mechanism and the additive mechanism. The former one interprets the score vector as probabilistic data. Compared to the Laplace mechanism for Borda voting rule with $d$ candidates, it reduces the mean squared error bound by half and lowers the maximum magnitude risk bound from $+\infty$ to $O(\frac{d^3}{n\epsilon})$. The latter one randomly outputs a subset of candidates according to their total scores. Its mean squared error bound is optimized from $O(\frac{d^5}{n\epsilon^2})$ to $O(\frac{d^4}{n\epsilon^2})$, and its maximum magnitude risk bound is reduced to $O(\frac{d^2}{n\epsilon})$. Experimental results validate that our proposed approaches averagely reduce estimation error by $50\%$ and are more robust to adversarial attacks.

  Access Model/Code and Paper
Machine-learning non-stationary noise out of gravitational wave detectors

Jan 10, 2020
Gabriele Vajente, Yiwen Huang, Maximiliano Isi, Jenne C. Driggers, Jeffrey S. Kissel, Marek J. Szczepanczyk, Salvatore Vitale

Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often used to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is non-stationary, linear techniques often fail or are sub-optimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove non-stationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational wave observatory, where we could obtain an improvement of the detector gravitational wave reach without introducing any bias on the source parameter estimation.

  Access Model/Code and Paper
Using Kernel Methods and Model Selection for Prediction of Preterm Birth

Sep 05, 2016
Ilia Vovsha, Ansaf Salleb-Aouissi, Anita Raja, Thomas Koch, Alex Rybchuk, Axinia Radeva, Ashwath Rajan, Yiwen Huang, Hatim Diab, Ashish Tomar, Ronald Wapner

We describe an application of machine learning to the problem of predicting preterm birth. We conduct a secondary analysis on a clinical trial dataset collected by the National In- stitute of Child Health and Human Development (NICHD) while focusing our attention on predicting different classes of preterm birth. We compare three approaches for deriving predictive models: a support vector machine (SVM) approach with linear and non-linear kernels, logistic regression with different model selection along with a model based on decision rules prescribed by physician experts for prediction of preterm birth. Our approach highlights the pre-processing methods applied to handle the inherent dynamics, noise and gaps in the data and describe techniques used to handle skewed class distributions. Empirical experiments demonstrate significant improvement in predicting preterm birth compared to past work.

* Presented at 2016 Machine Learning and Healthcare Conference (MLHC 2016), Los Angeles, CA. In this revision, we updated page 4 by adding the reference Vovsha et al. (2013) (incorrectly referenced as XXX in the previous version due to double blind reviewing). The bibtex entry is now added to the references 

  Access Model/Code and Paper
MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis

Mar 05, 2020
Hanshu Cai, Yiwen Gao, Shuting Sun, Na Li, Fuze Tian, Han Xiao, Jianxiu Li, Zhengwu Yang, Xiaowei Li, Qinglin Zhao, Zhenyu Liu, Zhijun Yao, Minqiang Yang, Hong Peng, Jing Zhu, Xiaowei Zhang, Guoping Gao, Fang Zheng, Rui Li, Zhihua Guo, Rong Ma, Jing Yang, Lan Zhang, Xiping Hu, Yumin Li, Bin Hu

According to the World Health Organization, the number of mental disorder patients, especially depression patients, has grown rapidly and become a leading contributor to the global burden of disease. However, the present common practice of depression diagnosis is based on interviews and clinical scales carried out by doctors, which is not only labor-consuming but also time-consuming. One important reason is due to the lack of physiological indicators for mental disorders. With the rising of tools such as data mining and artificial intelligence, using physiological data to explore new possible physiological indicators of mental disorder and creating new applications for mental disorder diagnosis has become a new research hot topic. However, good quality physiological data for mental disorder patients are hard to acquire. We present a multi-modal open dataset for mental-disorder analysis. The dataset includes EEG and audio data from clinically depressed patients and matching normal controls. All our patients were carefully diagnosed and selected by professional psychiatrists in hospitals. The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications. The 128-electrodes EEG signals of 53 subjects were recorded as both in resting state and under stimulation; the 3-electrode EEG signals of 55 subjects were recorded in resting state; the audio data of 52 subjects were recorded during interviewing, reading, and picture description. We encourage other researchers in the field to use it for testing their methods of mental-disorder analysis.

  Access Model/Code and Paper