Models, code, and papers for "Zihao Fan":

Connectionist Recommendation in the Wild

Sep 15, 2018
Zachary A. Pardos, Zihao Fan, Weijie Jiang

The aggregate behaviors of users can collectively encode deep semantic information about the objects with which they interact. In this paper, we demonstrate novel ways in which the synthesis of these data can illuminate the terrain of users' environment and support them in their decision making and wayfinding. A novel application of Recurrent Neural Networks and skip-gram models, approaches popularized by their application to modeling language, are brought to bear on student university enrollment sequences to create vector representations of courses and map out traversals across them. We present demonstrations of how scrutability from these neural networks can be gained and how the combination of these techniques can be seen as an evolution of content tagging and a means for a recommender to balance user preferences inferred from data with those explicitly specified. From validation of the models to the development of a UI, we discuss additional requisite functionality informed by the results of a field study leading to the ultimate deployment of the system at a university.

  Click for Model/Code and Paper
Towards Training Probabilistic Topic Models on Neuromorphic Multi-chip Systems

Apr 10, 2018
Zihao Xiao, Jianfei Chen, Jun Zhu

Probabilistic topic models are popular unsupervised learning methods, including probabilistic latent semantic indexing (pLSI) and latent Dirichlet allocation (LDA). By now, their training is implemented on general purpose computers (GPCs), which are flexible in programming but energy-consuming. Towards low-energy implementations, this paper investigates their training on an emerging hardware technology called the neuromorphic multi-chip systems (NMSs). NMSs are very effective for a family of algorithms called spiking neural networks (SNNs). We present three SNNs to train topic models. The first SNN is a batch algorithm combining the conventional collapsed Gibbs sampling (CGS) algorithm and an inference SNN to train LDA. The other two SNNs are online algorithms targeting at both energy- and storage-limited environments. The two online algorithms are equivalent with training LDA by using maximum-a-posterior estimation and maximizing the semi-collapsed likelihood, respectively. They use novel, tailored ordinary differential equations for stochastic optimization. We simulate the new algorithms and show that they are comparable with the GPC algorithms, while being suitable for NMS implementation. We also propose an extension to train pLSI and a method to prune the network to obey the limited fan-in of some NMSs.

* Accepted by AAAI-18, oral 

  Click for Model/Code and Paper
Deep Reinforcement Learning for Trading

Nov 22, 2019
Zihao Zhang, Stefan Zohren, Stephen Roberts

We adopt Deep Reinforcement Learning algorithms to design trading strategies for continuous futures contracts. Both discrete and continuous action spaces are considered and volatility scaling is incorporated to create reward functions which scale trade positions based on market volatility. We test our algorithms on the 50 most liquid futures contracts from 2011 to 2019, and investigate how performance varies across different asset classes including commodities, equity indices, fixed income and FX markets. We compare our algorithms against classical time series momentum strategies, and show that our method outperforms such baseline models, delivering positive profits despite heavy transaction costs. The experiments show that the proposed algorithms can follow large market trends without changing positions and can also scale down, or hold, through consolidation periods.

* 16 pages, 3 figures 

  Click for Model/Code and Paper
Distributed Equivalent Substitution Training for Large-Scale Recommender Systems

Sep 10, 2019
Haidong Rong, Yangzihao Wang, Feihu Zhou, Junjie Zhai, Haiyang Wu, Rui Lan, Fan Li, Han Zhang, Yuekui Yang, Zhenyu Guo, Di Wang

We present Distributed Equivalent Substitution (DES) training, a novel distributed training framework for recommender systems with large-scale dynamic sparse features. Our framework achieves faster convergence with less communication overhead and better computing resource utilization. DES strategy splits a weights-rich operator into sub-operators with co-located weights and aggregates partial results with much smaller communication cost to form a computationally equivalent substitution to the original operator. We show that for different types of models that recommender systems use, we can always find computational equivalent substitutions and splitting strategies for their weights-rich operators with theoretical communication load reduced ranging from 72.26% to 99.77%. We also present an implementation of DES that outperforms state-of-the-art recommender systems. Experiments show that our framework achieves up to 83% communication savings compared to other recommender systems, and can bring up to 4.5x improvement on throughput for deep models.

* 10 pages 

  Click for Model/Code and Paper
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs

Sep 03, 2019
Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander Smola, Zheng Zhang

Accelerating research in the emerging field of deep graph learning requires new tools. Such systems should support graph as the core abstraction and take care to maintain both forward (i.e. supporting new research ideas) and backward (i.e. integration with existing components) compatibility. In this paper, we present Deep Graph Library (DGL). DGL enables arbitrary message handling and mutation operators, flexible propagation rules, and is framework agnostic so as to leverage high-performance tensor, autograd operations, and other feature extraction modules already available in existing frameworks. DGL carefully handles the sparse and irregular graph structure, deals with graphs big and small which may change dynamically, fuses operations, and performs auto-batching, all to take advantages of modern hardware. DGL has been tested on a variety of models, including but not limited to the popular Graph Neural Networks (GNN) and its variants, with promising speed, memory footprint and scalability.

  Click for Model/Code and Paper