Models, code, and papers for "Ziqi Zheng":

Multimodal Emotion Recognition for One-Minute-Gradual Emotion Challenge

May 03, 2018
Ziqi Zheng, Chenjie Cao, Xingwei Chen, Guoqiang Xu

The continuous dimensional emotion modelled by arousal and valence can depict complex changes of emotions. In this paper, we present our works on arousal and valence predictions for One-Minute-Gradual (OMG) Emotion Challenge. Multimodal representations are first extracted from videos using a variety of acoustic, video and textual models and support vector machine (SVM) is then used for fusion of multimodal signals to make final predictions. Our solution achieves Concordant Correlation Coefficient (CCC) scores of 0.397 and 0.520 on arousal and valence respectively for the validation dataset, which outperforms the baseline systems with the best CCC scores of 0.15 and 0.23 on arousal and valence by a large margin.

  Click for Model/Code and Paper
Global and Local Sensitivity Guided Key Salient Object Re-augmentation for Video Saliency Detection

Nov 19, 2018
Ziqi Zhou, Zheng Wang, Huchuan Lu, Song Wang, Meijun Sun

The existing still-static deep learning based saliency researches do not consider the weighting and highlighting of extracted features from different layers, all features contribute equally to the final saliency decision-making. Such methods always evenly detect all "potentially significant regions" and unable to highlight the key salient object, resulting in detection failure of dynamic scenes. In this paper, based on the fact that salient areas in videos are relatively small and concentrated, we propose a \textbf{key salient object re-augmentation method (KSORA) using top-down semantic knowledge and bottom-up feature guidance} to improve detection accuracy in video scenes. KSORA includes two sub-modules (WFE and KOS): WFE processes local salient feature selection using bottom-up strategy, while KOS ranks each object in global fashion by top-down statistical knowledge, and chooses the most critical object area for local enhancement. The proposed KSORA can not only strengthen the saliency value of the local key salient object but also ensure global saliency consistency. Results on three benchmark datasets suggest that our model has the capability of improving the detection accuracy on complex scenes. The significant performance of KSORA, with a speed of 17FPS on modern GPUs, has been verified by comparisons with other ten state-of-the-art algorithms.

* 6 figures, 10 pages 

  Click for Model/Code and Paper
Efficient Adversarial Training with Transferable Adversarial Examples

Dec 27, 2019
Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, Atul Prakash

Adversarial training is an effective defense method to protect classification models against adversarial attacks. However, one limitation of this approach is that it can require orders of magnitude additional training time due to high cost of generating strong adversarial examples during training. In this paper, we first show that there is high transferability between models from neighboring epochs in the same training process, i.e., adversarial examples from one epoch continue to be adversarial in subsequent epochs. Leveraging this property, we propose a novel method, Adversarial Training with Transferable Adversarial Examples (ATTA), that can enhance the robustness of trained models and greatly improve the training efficiency by accumulating adversarial perturbations through epochs. Compared to state-of-the-art adversarial training methods, ATTA enhances adversarial accuracy by up to 7.2% on CIFAR10 and requires 12~14x less training time on MNIST and CIFAR10 datasets with comparable model robustness.

  Click for Model/Code and Paper
SG-FCN: A Motion and Memory-Based Deep Learning Model for Video Saliency Detection

Sep 21, 2018
Meijun Sun, Ziqi Zhou, QinGhua Hu, Zheng Wang, Jianmin Jiang

Data-driven saliency detection has attracted strong interest as a result of applying convolutional neural networks to the detection of eye fixations. Although a number of imagebased salient object and fixation detection models have been proposed, video fixation detection still requires more exploration. Different from image analysis, motion and temporal information is a crucial factor affecting human attention when viewing video sequences. Although existing models based on local contrast and low-level features have been extensively researched, they failed to simultaneously consider interframe motion and temporal information across neighboring video frames, leading to unsatisfactory performance when handling complex scenes. To this end, we propose a novel and efficient video eye fixation detection model to improve the saliency detection performance. By simulating the memory mechanism and visual attention mechanism of human beings when watching a video, we propose a step-gained fully convolutional network by combining the memory information on the time axis with the motion information on the space axis while storing the saliency information of the current frame. The model is obtained through hierarchical training, which ensures the accuracy of the detection. Extensive experiments in comparison with 11 state-of-the-art methods are carried out, and the results show that our proposed model outperforms all 11 methods across a number of publicly available datasets.

* IEEE Transactions on Cybernetics ( Volume: PP, Issue: 99 ),2018 

  Click for Model/Code and Paper
Attributing Hacks

Aug 14, 2017
Ziqi Liu, Alexander J. Smola, Kyle Soska, Yu-Xiang Wang, Qinghua Zheng, Jun Zhou

In this paper we describe an algorithm for estimating the provenance of hacks on websites. That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time. Specifically, we use hazard regression with a time-varying additive hazard function parameterized in a generalized linear form. The activation coefficients on each feature are continuous-time functions over time. We formulate the problem of learning these functions as a constrained variational maximum likelihood estimation problem with total variation penalty and show that the optimal solution is a 0th order spline (a piecewise constant function) with a finite number of known knots. This allows the inference problem to be solved efficiently and at scale by solving a finite dimensional optimization problem. Extensive experiments on real data sets show that our method significantly outperforms Cox's proportional hazard model. We also conduct a case study and verify that the fitted functions are indeed recovering vulnerable features and real-life events such as the release of code to exploit these features in hacker blogs.

* Appeared at AISTATS'17. Full version under review at the Electronic Journal of Statistics 

  Click for Model/Code and Paper
A Fine-Grained Facial Expression Database for End-to-End Multi-Pose Facial Expression Recognition

Jul 25, 2019
Wenxuan Wang, Qiang Sun, Tao Chen, Chenjie Cao, Ziqi Zheng, Guoqiang Xu, Han Qiu, Yanwei Fu

The recent research of facial expression recognition has made a lot of progress due to the development of deep learning technologies, but some typical challenging problems such as the variety of rich facial expressions and poses are still not resolved. To solve these problems, we develop a new Facial Expression Recognition (FER) framework by involving the facial poses into our image synthesizing and classification process. There are two major novelties in this work. First, we create a new facial expression dataset of more than 200k images with 119 persons, 4 poses and 54 expressions. To our knowledge this is the first dataset to label faces with subtle emotion changes for expression recognition purpose. It is also the first dataset that is large enough to validate the FER task on unbalanced poses, expressions, and zero-shot subject IDs. Second, we propose a facial pose generative adversarial network (FaPE-GAN) to synthesize new facial expression images to augment the data set for training purpose, and then learn a LightCNN based Fa-Net model for expression classification. Finally, we advocate four novel learning tasks on this dataset. The experimental results well validate the effectiveness of the proposed approach.

* 10 pages, 8 figures 

  Click for Model/Code and Paper
Distributed Deep Forest and its Application to Automatic Detection of Cash-out Fraud

May 27, 2018
Ya-Lin Zhang, Jun Zhou, Wenhao Zheng, Ji Feng, Longfei Li, Ziqi Liu, Ming Li, Zhiqiang Zhang, Chaochao Chen, Xiaolong Li, Zhi-Hua Zhou

Internet companies are facing the need of handling large scale machine learning applications in a daily basis, and distributed system which can handle extra-large scale tasks is needed. Deep forest is a recently proposed deep learning framework which uses tree ensembles as its building blocks and it has achieved highly competitive results on various domains of tasks. However, it has not been tested on extremely large scale tasks. In this work, based on our parameter server system and platform of artificial intelligence, we developed the distributed version of deep forest with an easy-to-use GUI. To the best of our knowledge, this is the first implementation of distributed deep forest. To meet the need of real-world tasks, many improvements are introduced to the original deep forest model. We tested the deep forest model on an extra-large scale task, i.e., automatic detection of cash-out fraud, with more than 100 millions of training samples. Experimental results showed that the deep forest model has the best performance according to the evaluation metrics from different perspectives even with very little effort for parameter tuning. This model can block fraud transactions in a large amount of money \footnote{detail is business confidential} each day. Even compared with the best deployed model, deep forest model can additionally bring into a significant decrease of economic loss.

  Click for Model/Code and Paper
Learning to Augment Expressions for Few-shot Fine-grained Facial Expression Recognition

Jan 17, 2020
Wenxuan Wang, Yanwei Fu, Qiang Sun, Tao Chen, Chenjie Cao, Ziqi Zheng, Guoqiang Xu, Han Qiu, Yu-Gang Jiang, Xiangyang Xue

Affective computing and cognitive theory are widely used in modern human-computer interaction scenarios. Human faces, as the most prominent and easily accessible features, have attracted great attention from researchers. Since humans have rich emotions and developed musculature, there exist a lot of fine-grained expressions in real-world applications. However, it is extremely time-consuming to collect and annotate a large number of facial images, of which may even require psychologists to correctly categorize them. To the best of our knowledge, the existing expression datasets are only limited to several basic facial expressions, which are not sufficient to support our ambitions in developing successful human-computer interaction systems. To this end, a novel Fine-grained Facial Expression Database - F2ED is contributed in this paper, and it includes more than 200k images with 54 facial expressions from 119 persons. Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we further evaluate several tasks of few-shot expression learning by virtue of our F2ED, which are to recognize the facial expressions given only few training instances. These tasks mimic human performance to learn robust and general representation from few examples. To address such few-shot tasks, we propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images and thus augmenting the instances of few-shot expression classes. Extensive experiments are conducted on F2ED and existing facial expression datasets, i.e., JAFFE and FER2013, to validate the efficacy of our F2ED in pre-training facial expression recognition network and the effectiveness of our proposed approach Comp-GAN to improve the performance of few-shot recognition tasks.

* 17 pages, 18 figures 

  Click for Model/Code and Paper
Instance Map based Image Synthesis with a Denoising Generative Adversarial Network

Jan 10, 2018
Ziqiang Zheng, Chao Wang, Zhibin Yu, Haiyong Zheng, Bing Zheng

Semantic layouts based Image synthesizing, which has benefited from the success of Generative Adversarial Network (GAN), has drawn much attention in these days. How to enhance the synthesis image equality while keeping the stochasticity of the GAN is still a challenge. We propose a novel denoising framework to handle this problem. The overlapped objects generation is another challenging task when synthesizing images from a semantic layout to a realistic RGB photo. To overcome this deficiency, we include a one-hot semantic label map to force the generator paying more attention on the overlapped objects generation. Furthermore, we improve the loss function of the discriminator by considering perturb loss and cascade layer loss to guide the generation process. We applied our methods on the Cityscapes, Facades and NYU datasets and demonstrate the image generation ability of our model.

* 10 pages, 16figures 

  Click for Model/Code and Paper
Pipeline Generative Adversarial Networks for Facial Images Generation with Multiple Attributes

Nov 29, 2017
Ziqiang Zheng, Zhibin Yu, Haiyong Zheng, Chao Wang, Nan Wang

Generative Adversarial Networks are proved to be efficient on various kinds of image generation tasks. However, it is still a challenge if we want to generate images precisely. Many researchers focus on how to generate images with one attribute. But image generation under multiple attributes is still a tough work. In this paper, we try to generate a variety of face images under multiple constraints using a pipeline process. The Pip-GAN (Pipeline Generative Adversarial Network) we present employs a pipeline network structure which can generate a complex facial image step by step using a neutral face image. We applied our method on two face image databases and demonstrate its ability to generate convincing novel images of unseen identities under multiple conditions previously.

* 9 pages, 10 figures 

  Click for Model/Code and Paper
Visual Reranking with Improved Image Graph

Jun 03, 2014
Ziqiong Liu, Shengjin Wang, Liang Zheng, Qi Tian

This paper introduces an improved reranking method for the Bag-of-Words (BoW) based image search. Built on [1], a directed image graph robust to outlier distraction is proposed. In our approach, the relevance among images is encoded in the image graph, based on which the initial rank list is refined. Moreover, we show that the rank-level feature fusion can be adopted in this reranking method as well. Taking advantage of the complementary nature of various features, the reranking performance is further enhanced. Particularly, we exploit the reranking method combining the BoW and color information. Experiments on two benchmark datasets demonstrate that ourmethod yields significant improvements and the reranking results are competitive to the state-of-the-art methods.

  Click for Model/Code and Paper
Packing and Padding: Coupled Multi-index for Accurate Image Retrieval

Apr 13, 2014
Liang Zheng, Shengjin Wang, Ziqiong Liu, Qi Tian

In Bag-of-Words (BoW) based image retrieval, the SIFT visual word has a low discriminative power, so false positive matches occur prevalently. Apart from the information loss during quantization, another cause is that the SIFT feature only describes the local gradient distribution. To address this problem, this paper proposes a coupled Multi-Index (c-MI) framework to perform feature fusion at indexing level. Basically, complementary features are coupled into a multi-dimensional inverted index. Each dimension of c-MI corresponds to one kind of feature, and the retrieval process votes for images similar in both SIFT and other feature spaces. Specifically, we exploit the fusion of local color feature into c-MI. While the precision of visual match is greatly enhanced, we adopt Multiple Assignment to improve recall. The joint cooperation of SIFT and color features significantly reduces the impact of false positive matches. Extensive experiments on several benchmark datasets demonstrate that c-MI improves the retrieval accuracy significantly, while consuming only half of the query time compared to the baseline. Importantly, we show that c-MI is well complementary to many prior techniques. Assembling these methods, we have obtained an mAP of 85.8% and N-S score of 3.85 on Holidays and Ukbench datasets, respectively, which compare favorably with the state-of-the-arts.

* 8 pages, 7 figures, 6 tables. Accepted to CVPR 2014 

  Click for Model/Code and Paper
Online Learning for Classification of Low-rank Representation Features and Its Applications in Audio Segment Classification

Dec 19, 2011
Ziqiang Shi, Jiqing Han, Tieran Zheng, Shiwen Deng

In this paper, a novel framework based on trace norm minimization for audio segment is proposed. In this framework, both the feature extraction and classification are obtained by solving corresponding convex optimization problem with trace norm regularization. For feature extraction, robust principle component analysis (robust PCA) via minimization a combination of the nuclear norm and the $\ell_1$-norm is used to extract low-rank features which are robust to white noise and gross corruption for audio segments. These low-rank features are fed to a linear classifier where the weight and bias are learned by solving similar trace norm constrained problems. For this classifier, most methods find the weight and bias in batch-mode learning, which makes them inefficient for large-scale problems. In this paper, we propose an online framework using accelerated proximal gradient method. This framework has a main advantage in memory cost. In addition, as a result of the regularization formulation of matrix classification, the Lipschitz constant was given explicitly, and hence the step size estimation of general proximal gradient method was omitted in our approach. Experiments on real data sets for laugh/non-laugh and applause/non-applause classification indicate that this novel framework is effective and noise robust.

  Click for Model/Code and Paper
ReshapeGAN: Object Reshaping by Providing A Single Reference Image

May 16, 2019
Ziqiang Zheng, Yang Wu, Zhibin Yu, Yang Yang, Haiyong Zheng, Takeo Kanade

The aim of this work is learning to reshape the object in an input image to an arbitrary new shape, by just simply providing a single reference image with an object instance in the desired shape. We propose a new Generative Adversarial Network (GAN) architecture for such an object reshaping problem, named ReshapeGAN. The network can be tailored for handling all kinds of problem settings, including both within-domain (or single-dataset) reshaping and cross-domain (typically across mutiple datasets) reshaping, with paired or unpaired training data. The appearance of the input object is preserved in all cases, and thus it is still identifiable after reshaping, which has never been achieved as far as we are aware. We present the tailored models of the proposed ReshapeGAN for all the problem settings, and have them tested on 8 kinds of reshaping tasks with 13 different datasets, demonstrating the ability of ReshapeGAN on generating convincing and superior results for object reshaping. To the best of our knowledge, we are the first to be able to make one GAN framework work on all such object reshaping tasks, especially the cross-domain tasks on handling multiple diverse datasets. We present here both ablation studies on our proposed ReshapeGAN models and comparisons with the state-of-the-art models when they are made comparable, using all kinds of applicable metrics that we are aware of.

* 25 pages, 23 figures 

  Click for Model/Code and Paper
One-Shot Image-to-Image Translation via Part-Global Learning with a Multi-adversarial Framework

May 12, 2019
Ziqiang Zheng, Zhibin Yu, Haiyong Zheng, Yang Yang, Heng Tao Shen

It is well known that humans can learn and recognize objects effectively from several limited image samples. However, learning from just a few images is still a tremendous challenge for existing main-stream deep neural networks. Inspired by analogical reasoning in the human mind, a feasible strategy is to translate the abundant images of a rich source domain to enrich the relevant yet different target domain with insufficient image data. To achieve this goal, we propose a novel, effective multi-adversarial framework (MA) based on part-global learning, which accomplishes one-shot cross-domain image-to-image translation. In specific, we first devise a part-global adversarial training scheme to provide an efficient way for feature extraction and prevent discriminators being over-fitted. Then, a multi-adversarial mechanism is employed to enhance the image-to-image translation ability to unearth the high-level semantic representation. Moreover, a balanced adversarial loss function is presented, which aims to balance the training data and stabilize the training process. Extensive experiments demonstrate that the proposed approach can obtain impressive results on various datasets between two extremely imbalanced image domains and outperform state-of-the-art methods on one-shot image-to-image translation.

* 9 pages, 13 figures 

  Click for Model/Code and Paper
Unpaired Photo-to-Caricature Translation on Faces in the Wild

Jul 25, 2018
Ziqiang Zheng, Wang Chao, Zhibin Yu, Nan Wang, Haiyong Zheng, Bing Zheng

Recently, image-to-image translation has been made much progress owing to the success of conditional Generative Adversarial Networks (cGANs). And some unpaired methods based on cycle consistency loss such as DualGAN, CycleGAN and DiscoGAN are really popular. However, it's still very challenging for translation tasks with the requirement of high-level visual information conversion, such as photo-to-caricature translation that requires satire, exaggeration, lifelikeness and artistry. We present an approach for learning to translate faces in the wild from the source photo domain to the target caricature domain with different styles, which can also be used for other high-level image-to-image translation tasks. In order to capture global structure with local statistics while translation, we design a dual pathway model with one coarse discriminator and one fine discriminator. For generator, we provide one extra perceptual loss in association with adversarial loss and cycle consistency loss to achieve representation learning for two different domains. Also the style can be learned by the auxiliary noise input. Experiments on photo-to-caricature translation of faces in the wild show considerable performance gain of our proposed method over state-of-the-art translation methods as well as its potential real applications.

* 28 pages, 11 figures 

  Click for Model/Code and Paper
Generative Adversarial Network with Multi-Branch Discriminator for Cross-Species Image-to-Image Translation

Jan 24, 2019
Ziqiang Zheng, Zhibin Yu, Haiyong Zheng, Yang Wu, Bing Zheng, Ping Lin

Current approaches have made great progress on image-to-image translation tasks benefiting from the success of image synthesis methods especially generative adversarial networks (GANs). However, existing methods are limited to handling translation tasks between two species while keeping the content matching on the semantic level. A more challenging task would be the translation among more than two species. To explore this new area, we propose a simple yet effective structure of a multi-branch discriminator for enhancing an arbitrary generative adversarial architecture (GAN), named GAN-MBD. It takes advantage of the boosting strategy to break a common discriminator into several smaller ones with fewer parameters, which can enhance the generation and synthesis abilities of GANs efficiently and effectively. Comprehensive experiments show that the proposed multi-branch discriminator can dramatically improve the performance of popular GANs on cross-species image-to-image translation tasks while reducing the number of parameters for computation. The code and some datasets are attached as supplementary materials for reference.

* 10 pages, 16 figures 

  Click for Model/Code and Paper
Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation

Aug 06, 2018
Chao Wang, Haiyong Zheng, Zhibin Yu, Ziqiang Zheng, Zhaorui Gu, Bing Zheng

Image-to-image translation has been made much progress with embracing Generative Adversarial Networks (GANs). However, it's still very challenging for translation tasks that require high quality, especially at high-resolution and photorealism. In this paper, we present Discriminative Region Proposal Adversarial Networks (DRPAN) for high-quality image-to-image translation. We decompose the procedure of image-to-image translation task into three iterated steps, first is to generate an image with global structure but some local artifacts (via GAN), second is using our DRPnet to propose the most fake region from the generated image, and third is to implement "image inpainting" on the most fake region for more realistic result through a reviser, so that the system (DRPAN) can be gradually optimized to synthesize images with more attention on the most artifact local part. Experiments on a variety of image-to-image translation tasks and datasets validate that our method outperforms state-of-the-arts for producing high-quality translation results in terms of both human perceptual studies and automatic quantitative measures.

* ECCV 2018 

  Click for Model/Code and Paper
Guarantees of Augmented Trace Norm Models in Tensor Recovery

Jul 23, 2012
Ziqiang Shi, Jiqing Han, Tieran Zheng, Shiwen Deng, Ji Li

This paper studies the recovery guarantees of the models of minimizing $\|\mathcal{X}\|_*+\frac{1}{2\alpha}\|\mathcal{X}\|_F^2$ where $\mathcal{X}$ is a tensor and $\|\mathcal{X}\|_*$ and $\|\mathcal{X}\|_F$ are the trace and Frobenius norm of respectively. We show that they can efficiently recover low-rank tensors. In particular, they enjoy exact guarantees similar to those known for minimizing $\|\mathcal{X}\|_*$ under the conditions on the sensing operator such as its null-space property, restricted isometry property, or spherical section property. To recover a low-rank tensor $\mathcal{X}^0$, minimizing $\|\mathcal{X}\|_*+\frac{1}{2\alpha}\|\mathcal{X}\|_F^2$ returns the same solution as minimizing $\|\mathcal{X}\|_*$ almost whenever $\alpha\geq10\mathop {\max}\limits_{i}\|X^0_{(i)}\|_2$.

  Click for Model/Code and Paper