We tackle the problem of one-shot segmentation: finding and segmenting a previously unseen object in a cluttered scene based on a single instruction example. We propose a novel dataset, which we call $\textit{cluttered Omniglot}$. Using a baseline architecture combining a Siamese embedding for detection with a U-net for segmentation we show that increasing levels of clutter make the task progressively harder. Using oracle models with access to various amounts of ground-truth information, we evaluate different aspects of the problem and show that in this kind of visual search task, detection and segmentation are two intertwined problems, the solution to each of which helps solving the other. We therefore introduce $\textit{MaskNet}$, an improved model that attends to multiple candidate locations, generates segmentation proposals to mask out background clutter and selects among the segmented objects. Our findings suggest that such image recognition models based on an iterative refinement of object detection and foreground segmentation may provide a way to deal with highly cluttered scenes. Click to Read Paper
Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. The model provides a new tool to generate stimuli for neuroscience and might offer insights into the deep representations learned by convolutional neural networks. Click to Read Paper
In fine art, especially painting, humans have mastered the skill to create unique visual experiences through composing a complex interplay between the content and style of an image. Thus far the algorithmic basis of this process is unknown and there exists no artificial system with similar capabilities. However, in other key areas of visual perception such as object and face recognition near-human performance was recently demonstrated by a class of biologically inspired vision models called Deep Neural Networks. Here we introduce an artificial system based on a Deep Neural Network that creates artistic images of high perceptual quality. The system uses neural representations to separate and recombine content and style of arbitrary images, providing a neural algorithm for the creation of artistic images. Moreover, in light of the striking similarities between performance-optimised artificial neural networks and biological vision, our work offers a path forward to an algorithmic understanding of how humans create and perceive artistic imagery. Click to Read Paper
We tackle one-shot visual search by example for arbitrary object categories: Given an example image of a novel reference object, find and segment all object instances of the same category within a scene. To address this problem, we propose Siamese Mask R-CNN. It extends Mask R-CNN by a Siamese backbone encoding both reference image and scene, allowing it to target detection and segmentation towards the reference category. We use Siamese Mask R-CNN to perform one-shot instance segmentation on MS-COCO, demonstrating that it can detect and segment objects of novel categories it was not trained on, and without using mask annotations at test time. Our results highlight challenges of the one-shot setting: while transferring knowledge about instance segmentation to novel object categories not used during training works very well, targeting the detection and segmentation networks towards the reference category appears to be more difficult. Our work provides a first strong baseline for one-shot instance segmentation and will hopefully inspire further research in this relatively unexplored field. Click to Read Paper
Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of 'what' and 'where'. Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations, a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions. Our network scales well to thousands of neurons and short recordings and can be trained end-to-end. We evaluate this architecture on ground-truth data to explore the challenges and limitations of CNN-based system identification. Moreover, we show that our network model outperforms current state-of-the art system identification models of mouse primary visual cortex. Click to Read Paper
Here we present a parametric model for dynamic textures. The model is based on spatiotemporal summary statistics computed from the feature representations of a Convolutional Neural Network (CNN) trained on object recognition. We demonstrate how the model can be used to synthesise new samples of dynamic textures and to predict motion in simple movies. Click to Read Paper
Visualizing features in deep neural networks (DNNs) can help understanding their computations. Many previous studies aimed to visualize the selectivity of individual units by finding meaningful images that maximize their activation. However, comparably little attention has been paid to visualizing to what image transformations units in DNNs are invariant. Here we propose a method to discover invariances in the responses of hidden layer units of deep neural networks. Our approach is based on simultaneously searching for a batch of images that strongly activate a unit while at the same time being as distinct from each other as possible. We find that even early convolutional layers in VGG-19 exhibit various forms of response invariance: near-perfect phase invariance in some units and invariance to local diffeomorphic transformations in others. At the same time, we uncover representational differences with ResNet-50 in its corresponding layers. We conclude that invariance transformations are a major computational component learned by DNNs and we provide a systematic method to study them. Click to Read Paper
Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scale. We demonstrate how this enhances the method by allowing high-resolution controlled stylisation and helps to alleviate common failure cases such as applying ground textures to sky regions. Furthermore, by decomposing style into these perceptual factors we enable the combination of style information from multiple sources to generate new, perceptually appealing styles from existing ones. We also describe how these methods can be used to more efficiently produce large size, high-quality stylisation. Finally we show how the introduced control measures can be applied in recent methods for Fast Neural Style Transfer. Click to Read Paper
Classical models describe primary visual cortex (V1) as a filter bank of orientation-selective linear-nonlinear (LN) or energy models, but these models fail to predict neural responses to natural stimuli accurately. Recent work shows that models based on convolutional neural networks (CNNs) lead to much more accurate predictions, but it remains unclear which features are extracted by V1 neurons beyond orientation selectivity and phase invariance. Here we work towards systematically studying V1 computations by categorizing neurons into groups that perform similar computations. We present a framework to identify common features independent of individual neurons' orientation selectivity by using a rotation-equivariant convolutional neural network, which automatically extracts every feature at multiple different orientations. We fit this model to responses of a population of 6000 neurons to natural images recorded in mouse primary visual cortex using two-photon imaging. We show that our rotation-equivariant network not only outperforms a regular CNN with the same number of feature maps, but also reveals a number of common features shared by many V1 neurons, which deviate from the typical textbook idea of V1 as a bank of Gabor filters. Our findings are a first step towards a powerful new tool to study the nonlinear computations in V1. Click to Read Paper
Theano: A Python framework for fast computation of mathematical expressions
May 09, 2016
The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it. Click to Read Paper
Modern socio-technical systems are increasingly complex. A fundamental problem is that the borders of such systems are often not well-defined a-priori, which among other problems can lead to unwanted behavior during runtime. Ideally, unwanted behavior should be prevented. If this is not possible the system shall at least be able to help determine potential cause(s) a-posterori, identify responsible parties and make them accountable for their behavior. Recently, several algorithms addressing these concepts have been proposed. However, the applicability of the corresponding approaches, specifically their effectiveness and performance, is mostly unknown. Therefore, in this paper, we propose ACCBench, a benchmark tool that allows to compare and evaluate causality algorithms under a consistent setting. Furthermore, we contribute an implementation of the two causality algorithms by G\"o{\ss}ler and Metayer and G\"o{\ss}ler and Astefanoaei as well as of a policy compliance approach based on some concepts of Main et al. Lastly, we conduct a case study of an Intelligent Door Control System, which exposes concrete strengths and weaknesses of all algorithms under different aspects. In the course of this, we show that the effectiveness of the algorithms in terms of cause detection as well as their performance differ to some extent. In addition, our analysis reports on some qualitative aspects that should be considered when evaluating each algorithm. For example, the human effort needed to configure the algorithm and model the use case is analyzed. Click to Read Paper
Medical imaging is a domain which suffers from a paucity of manually annotated data for the training of learning algorithms. Manually delineating pathological regions at a pixel level is a time consuming process, especially in 3D images, and often requires the time of a trained expert. As a result, supervised machine learning solutions must make do with small amounts of labelled data, despite there often being additional unlabelled data available. Whilst of less value than labelled images, these unlabelled images can contain potentially useful information. In this paper we propose combining both labelled and unlabelled data within a GAN framework, before using the resulting network to produce images for use when training a segmentation network. We explore the task of deep grey matter multi-class segmentation in an AD dataset and show that the proposed method leads to a significant improvement in segmentation results, particularly in cases where the amount of labelled data is restricted. We show that this improvement is largely driven by a greater ability to segment the structures known to be the most affected by AD, thereby demonstrating the benefits of exposing the system to more examples of pathological anatomical variation. We also show how a shift in domain of the training data from young and healthy towards older and more pathological examples leads to better segmentations of the latter cases, and that this leads to a significant improvement in the ability for the computed segmentations to stratify cases of AD. Click to Read Paper
We present an empirical study of applying deep Convolutional Neural Networks (CNN) to the task of fashion and apparel image classification to improve meta-data enrichment of e-commerce applications. Five different CNN architectures were analyzed using clean and pre-trained models. The models were evaluated in three different tasks person detection, product and gender classification, on two small and large scale datasets. Click to Read Paper
The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data. Click to Read Paper
One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availability of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available. Click to Read Paper
There is a perceived trade-off between machine learning code that is easy to write, and machine learning code that is scalable or fast to execute. In machine learning, imperative style libraries like Autograd and PyTorch are easy to write, but suffer from high interpretive overhead and are not easily deployable in production or mobile settings. Graph-based libraries like TensorFlow and Theano benefit from whole-program optimization and can be deployed broadly, but make expressing complex models more cumbersome. We describe how the use of staged programming in Python, via source code transformation, offers a midpoint between these two library design patterns, capturing the benefits of both. A key insight is to delay all type-dependent decisions until runtime, via dynamic dispatch. We instantiate these principles in AutoGraph, a software system that improves the programming experience of the TensorFlow library, and demonstrate usability improvements with no loss in performance compared to native TensorFlow graphs. We also show that our system is backend agnostic, and demonstrate targeting an alternate IR with characteristics not found in TensorFlow graphs. Click to Read Paper
In this work we investigate different avenues of improving the Neural Algorithm of Artistic Style (by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge, arXiv:1508.06576). While showing great results when transferring homogeneous and repetitive patterns, the original style representation often fails to capture more complex properties, like having separate styles of foreground and background. This leads to visual artifacts and undesirable textures appearing in unexpected regions when performing style transfer. We tackle this issue with a variety of approaches, mostly by modifying the style representation in order for it to capture more information and impose a tighter constraint on the style transfer result. In our experiments, we subjectively evaluate our best method as producing from barely noticeable to significant improvements in the quality of style transfer. Click to Read Paper
We explore the method of style transfer presented in the article "A Neural Algorithm of Artistic Style" by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge (arXiv:1508.06576). We first demonstrate the power of the suggested style space on a few examples. We then vary different hyper-parameters and program properties that were not discussed in the original paper, among which are the recognition network used, starting point of the gradient descent and different ways to partition style and content layers. We also give a brief comparison of some of the existing algorithm implementations and deep learning frameworks used. To study the style space further we attempt to generate synthetic images by maximizing a single entry in one of the Gram matrices $\mathcal{G}_l$ and some interesting results are observed. Next, we try to mimic the sparsity and intensity distribution of Gram matrices obtained from a real painting and generate more complex textures. Finally, we propose two new style representations built on top of network's features and discuss how one could be used to achieve local and potentially content-aware style transfer. Click to Read Paper