Models, code, and papers for "Ali Dabouei":

Defending Against Adversarial Iris Examples Using Wavelet Decomposition

Aug 08, 2019
Sobhan Soleymani, Ali Dabouei, Jeremy Dawson, Nasser M. Nasrabadi

Deep neural networks have presented impressive performance in biometric applications. However, their performance is highly at risk when facing carefully crafted input samples known as adversarial examples. In this paper, we present three defense strategies to detect adversarial iris examples. These defense strategies are based on wavelet domain denoising of the input examples by investigating each wavelet sub-band and removing the sub-bands that are most affected by the adversary. The first proposed defense strategy reconstructs multiple denoised versions of the input example through manipulating the mid- and high-frequency components of the wavelet domain representation of the input example and makes a decision upon the classification result of the majority of the denoised examples. The second and third proposed defense strategies aim to denoise each wavelet domain sub-band and determine the sub-bands that are most likely affected by the adversary using the reconstruction error computed for each sub-band. We test the performance of the proposed defense strategies against several attack scenarios and compare the results with five state of the art defense strategies.

* The Tenth IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2019) 

  Click for Model/Code and Paper
Adversarial Examples to Fool Iris Recognition Systems

Jul 18, 2019
Sobhan Soleymani, Ali Dabouei, Jeremy Dawson, Nasser M. Nasrabadi

Adversarial examples have recently proven to be able to fool deep learning methods by adding carefully crafted small perturbation to the input space image. In this paper, we study the possibility of generating adversarial examples for code-based iris recognition systems. Since generating adversarial examples requires back-propagation of the adversarial loss, conventional filter bank-based iris-code generation frameworks cannot be employed in such a setup. Therefore, to compensate for this shortcoming, we propose to train a deep auto-encoder surrogate network to mimic the conventional iris code generation procedure. This trained surrogate network is then deployed to generate the adversarial examples using the iterative gradient sign method algorithm. We consider non-targeted and targeted attacks through three attack scenarios. Considering these attacks, we study the possibility of fooling an iris recognition system in white-box and black-box frameworks.

* 2019 International Conference on Biometrics (ICB 2019) 

  Click for Model/Code and Paper
Fast Geometrically-Perturbed Adversarial Faces

Sep 28, 2018
Ali Dabouei, Sobhan Soleymani, Jeremy Dawson, Nasser M. Nasrabadi

The state-of-the-art performance of deep learning algorithms has led to a considerable increase in the utilization of machine learning in security-sensitive and critical applications. However, it has recently been shown that a small and carefully crafted perturbation in the input space can completely fool a deep model. In this study, we explore the extent to which face recognition systems are vulnerable to geometrically-perturbed adversarial faces. We propose a fast landmark manipulation method for generating adversarial faces, which is approximately 200 times faster than the previous geometric attacks and obtains 99.86% success rate on the state-of-the-art face recognition models. To further force the generated samples to be natural, we introduce a second attack constrained on the semantic structure of the face which has the half speed of the first attack with the success rate of 99.96%. Both attacks are extremely robust against the state-of-the-art defense methods with the success rate of equal or greater than 53.59%. Code is available at https://github.com/alldbi/FLM


  Click for Model/Code and Paper
Deep Cross Polarimetric Thermal-to-visible Face Recognition

Jan 04, 2018
Seyed Mehdi Iranmanesh, Ali Dabouei, Hadi Kazemi, Nasser M. Nasrabadi

In this paper, we present a deep coupled learning frame- work to address the problem of matching polarimetric ther- mal face photos against a gallery of visible faces. Polariza- tion state information of thermal faces provides the miss- ing textural and geometrics details in the thermal face im- agery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The pro- posed architecture is able to make full use of the polari- metric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recogni- tion methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embed- ding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superior- ity of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.


  Click for Model/Code and Paper
SmoothFool: An Efficient Framework for Computing Smooth Adversarial Perturbations

Oct 08, 2019
Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Jeremy Dawson, Nasser M. Nasrabadi

Deep neural networks are susceptible to adversarial manipulations in the input domain. The extent of vulnerability has been explored intensively in cases of $\ell_p$-bounded and $\ell_p$-minimal adversarial perturbations. However, the vulnerability of DNNs to adversarial perturbations with specific statistical properties or frequency-domain characteristics has not been sufficiently explored. In this paper, we study the smoothness of perturbations and propose SmoothFool, a general and computationally efficient framework for computing smooth adversarial perturbations. Through extensive experiments, we validate the efficacy of the proposed method for both the white-box and black-box attack scenarios. In particular, we demonstrate that: (i) there exist extremely smooth adversarial perturbations for well-established and widely used network architectures, (ii) smoothness significantly enhances the robustness of perturbations against state-of-the-art defense mechanisms, (iii) smoothness improves the transferability of adversarial perturbations across both data points and network architectures, and (iv) class categories exhibit a variable range of susceptibility to smooth perturbations. Our results suggest that smooth APs can play a significant role in exploring the vulnerability extent of DNNs to adversarial examples.


  Click for Model/Code and Paper
Multi-Level Feature Abstraction from Convolutional Neural Networks for Multimodal Biometric Identification

Jul 03, 2018
Sobhan Soleymani, Ali Dabouei, Hadi Kazemi, Jeremy Dawson, Nasser M. Nasrabadi

In this paper, we propose a deep multimodal fusion network to fuse multiple modalities (face, iris, and fingerprint) for person identification. The proposed deep multimodal fusion algorithm consists of multiple streams of modality-specific Convolutional Neural Networks (CNNs), which are jointly optimized at multiple feature abstraction levels. Multiple features are extracted at several different convolutional layers from each modality-specific CNN for joint feature fusion, optimization, and classification. Features extracted at different convolutional layers of a modality-specific CNN represent the input at several different levels of abstract representations. We demonstrate that an efficient multimodal classification can be accomplished with a significant reduction in the number of network parameters by exploiting these multi-level abstract representations extracted from all the modality-specific CNNs. We demonstrate an increase in multimodal person identification performance by utilizing the proposed multi-level feature abstract representations in our multimodal fusion, rather than using only the features from the last layer of each modality-specific CNNs. We show that our deep multi-modal CNNs with multimodal fusion at several different feature level abstraction can significantly outperform the unimodal representation accuracy. We also demonstrate that the joint optimization of all the modality-specific CNNs excels the score and decision level fusions of independently optimized CNNs.

* Accepted in "2018 International Conference on Pattern Recognition" 

  Click for Model/Code and Paper
Attribute-Centered Loss for Soft-Biometrics Guided Face Sketch-Photo Recognition

Apr 09, 2018
Hadi Kazemi, Sobhan Soleymani, Ali Dabouei, Mehdi Iranmanesh, Nasser M. Nasrabadi

Face sketches are able to capture the spatial topology of a face while lacking some facial attributes such as race, skin, or hair color. Existing sketch-photo recognition approaches have mostly ignored the importance of facial attributes. In this paper, we propose a new loss function, called attribute-centered loss, to train a Deep Coupled Convolutional Neural Network (DCCNN) for the facial attribute guided sketch to photo matching. Specifically, an attribute-centered loss is proposed which learns several distinct centers, in a shared embedding space, for photos and sketches with different combinations of attributes. The DCCNN simultaneously is trained to map photos and pairs of testified attributes and corresponding forensic sketches around their associated centers, while preserving the spatial topology information. Importantly, the centers learn to keep a relative distance from each other, related to their number of contradictory attributes. Extensive experiments are performed on composite (E-PRIP) and semi-forensic (IIIT-D Semi-forensic) databases. The proposed method significantly outperforms the state-of-the-art.

* Accepted as a conference paper on CVPRW 2018 

  Click for Model/Code and Paper
Deep Sketch-Photo Face Recognition Assisted by Facial Attributes

Jul 31, 2018
Seyed Mehdi Iranmanesh, Hadi Kazemi, Sobhan Soleymani, Ali Dabouei, Nasser M. Nasrabadi

In this paper, we present a deep coupled framework to address the problem of matching sketch image against a gallery of mugshots. Face sketches have the essential in- formation about the spatial topology and geometric details of faces while missing some important facial attributes such as ethnicity, hair, eye, and skin color. We propose a cou- pled deep neural network architecture which utilizes facial attributes in order to improve the sketch-photo recognition performance. The proposed Attribute-Assisted Deep Con- volutional Neural Network (AADCNN) method exploits the facial attributes and leverages the loss functions from the facial attributes identification and face verification tasks in order to learn rich discriminative features in a common em- bedding subspace. The facial attribute identification task increases the inter-personal variations by pushing apart the embedded features extracted from individuals with differ- ent facial attributes, while the verification task reduces the intra-personal variations by pulling together all the fea- tures that are related to one person. The learned discrim- inative features can be well generalized to new identities not seen in the training data. The proposed architecture is able to make full use of the sketch and complementary fa- cial attribute information to train a deep model compared to the conventional sketch-photo recognition methods. Exten- sive experiments are performed on composite (E-PRIP) and semi-forensic (IIIT-D semi-forensic) datasets. The results show the superiority of our method compared to the state- of-the-art models in sketch-photo recognition algorithms


  Click for Model/Code and Paper
Fingerprint Distortion Rectification using Deep Convolutional Neural Networks

Jan 03, 2018
Ali Dabouei, Hadi Kazemi, Seyed Mehdi Iranmanesh, Jeremi Dawson, Nasser M. Nasrabadi

Elastic distortion of fingerprints has a negative effect on the performance of fingerprint recognition systems. This negative effect brings inconvenience to users in authentication applications. However, in the negative recognition scenario where users may intentionally distort their fingerprints, this can be a serious problem since distortion will prevent recognition system from identifying malicious users. Current methods aimed at addressing this problem still have limitations. They are often not accurate because they estimate distortion parameters based on the ridge frequency map and orientation map of input samples, which are not reliable due to distortion. Secondly, they are not efficient and requiring significant computation time to rectify samples. In this paper, we develop a rectification model based on a Deep Convolutional Neural Network (DCNN) to accurately estimate distortion parameters from the input image. Using a comprehensive database of synthetic distorted samples, the DCNN learns to accurately estimate distortion bases ten times faster than the dictionary search methods used in the previous approaches. Evaluating the proposed method on public databases of distorted samples shows that it can significantly improve the matching performance of distorted samples.

* Accepted at ICB 2018 

  Click for Model/Code and Paper
Prosodic-Enhanced Siamese Convolutional Neural Networks for Cross-Device Text-Independent Speaker Verification

Jul 31, 2018
Sobhan Soleymani, Ali Dabouei, Seyed Mehdi Iranmanesh, Hadi Kazemi, Jeremy Dawson, Nasser M. Nasrabadi

In this paper a novel cross-device text-independent speaker verification architecture is proposed. Majority of the state-of-the-art deep architectures that are used for speaker verification tasks consider Mel-frequency cepstral coefficients. In contrast, our proposed Siamese convolutional neural network architecture uses Mel-frequency spectrogram coefficients to benefit from the dependency of the adjacent spectro-temporal features. Moreover, although spectro-temporal features have proved to be highly reliable in speaker verification models, they only represent some aspects of short-term acoustic level traits of the speaker's voice. However, the human voice consists of several linguistic levels such as acoustic, lexicon, prosody, and phonetics, that can be utilized in speaker verification models. To compensate for these inherited shortcomings in spectro-temporal features, we propose to enhance the proposed Siamese convolutional neural network architecture by deploying a multilayer perceptron network to incorporate the prosodic, jitter, and shimmer features. The proposed end-to-end verification architecture performs feature extraction and verification simultaneously. This proposed architecture displays significant improvement over classical signal processing approaches and deep algorithms for forensic cross-device speaker verification.

* Accepted in 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018) 

  Click for Model/Code and Paper
ID Preserving Generative Adversarial Network for Partial Latent Fingerprint Reconstruction

Jul 31, 2018
Ali Dabouei, Sobhan Soleymani, Hadi Kazemi, Seyed Mehdi Iranmanesh, Jeremy Dawson, Nasser M. Nasrabadi

Performing recognition tasks using latent fingerprint samples is often challenging for automated identification systems due to poor quality, distortion, and partially missing information from the input samples. We propose a direct latent fingerprint reconstruction model based on conditional generative adversarial networks (cGANs). Two modifications are applied to the cGAN to adapt it for the task of latent fingerprint reconstruction. First, the model is forced to generate three additional maps to the ridge map to ensure that the orientation and frequency information is considered in the generation process, and prevent the model from filling large missing areas and generating erroneous minutiae. Second, a perceptual ID preservation approach is developed to force the generator to preserve the ID information during the reconstruction process. Using a synthetically generated database of latent fingerprints, the deep network learns to predict missing information from the input latent samples. We evaluate the proposed method in combination with two different fingerprint matching algorithms on several publicly available latent fingerprint datasets. We achieved the rank-10 accuracy of 88.02\% on the IIIT-Delhi latent fingerprint database for the task of latent-to-latent matching and rank-50 accuracy of 70.89\% on the IIIT-Delhi MOLF database for the task of latent-to-sensor matching. Experimental results of matching reconstructed samples in both latent-to-sensor and latent-to-latent frameworks indicate that the proposed method significantly increases the matching accuracy of the fingerprint recognition systems for the latent samples.

* Accepted in BTAS 2018 

  Click for Model/Code and Paper