Models, code, and papers for "Andrey Ustyuzhanin":

A genetic algorithm for autonomous navigation in partially observable domain

Jul 27, 2015
Maxim Borisyak, Andrey Ustyuzhanin

The problem of autonomous navigation is one of the basic problems for robotics. Although, in general, it may be challenging when an autonomous vehicle is placed into partially observable domain. In this paper we consider simplistic environment model and introduce a navigation algorithm based on Learning Classifier System.


  Click for Model/Code and Paper
Adaptive Divergence for Rapid Adversarial Optimization

Dec 01, 2019
Maxim Borisyak, Tatiana Gaintseva, Andrey Ustyuzhanin

Adversarial Optimization (AO) provides a reliable, practical way to match two implicitly defined distributions, one of which is usually represented by a sample of real data, and the other is defined by a generator. Typically, AO involves training of a high-capacity model on each step of the optimization. In this work, we consider computationally heavy generators, for which training of high-capacity models is associated with substantial computational costs. To address this problem, we introduce a novel family of divergences, which varies the capacity of the underlying model, and allows for a significant acceleration with respect to the number of samples drawn from the generator. We demonstrate the performance of the proposed divergences on several tasks, including tuning parameters of a physics simulator, namely, Pythia event generator.


  Click for Model/Code and Paper
Disk storage management for LHCb based on Data Popularity estimator

Oct 01, 2015
Mikhail Hushchyn, Philippe Charpentier, Andrey Ustyuzhanin

This paper presents an algorithm providing recommendations for optimizing the LHCb data storage. The LHCb data storage system is a hybrid system. All datasets are kept as archives on magnetic tapes. The most popular datasets are kept on disks. The algorithm takes the dataset usage history and metadata (size, type, configuration etc.) to generate a recommendation report. This article presents how we use machine learning algorithms to predict future data popularity. Using these predictions it is possible to estimate which datasets should be removed from disk. We use regression algorithms and time series analysis to find the optimal number of replicas for datasets that are kept on disk. Based on the data popularity and the number of replicas optimization, the algorithm minimizes a loss function to find the optimal data distribution. The loss function represents all requirements for data distribution in the data storage system. We demonstrate how our algorithm helps to save disk space and to reduce waiting times for jobs using this data.


  Click for Model/Code and Paper
Numerical optimization for Artificial Retina Algorithm

Oct 01, 2017
Maxim Borisyak, Andrey Ustyuzhanin, Denis Derkach, Mikhail Belous

High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.


  Click for Model/Code and Paper
Towards automation of data quality system for CERN CMS experiment

Sep 25, 2017
Maxim Borisyak, Fedor Ratnikov, Denis Derkach, Andrey Ustyuzhanin

Daily operation of a large-scale experiment is a challenging task, particularly from perspectives of routine monitoring of quality for data being taken. We describe an approach that uses Machine Learning for the automated system to monitor data quality, which is based on partial use of data qualified manually by detector experts. The system automatically classifies marginal cases: both of good an bad data, and use human expert decision to classify remaining "grey area" cases. This study uses collision data collected by the CMS experiment at LHC in 2010. We demonstrate that proposed workflow is able to automatically process at least 20\% of samples without noticeable degradation of the result.


  Click for Model/Code and Paper
Cherenkov Detectors Fast Simulation Using Neural Networks

Mar 28, 2019
Denis Derkach, Nikita Kazeev, Fedor Ratnikov, Andrey Ustyuzhanin, Alexandra Volokhova

We propose a way to simulate Cherenkov detector response using a generative adversarial neural network to bypass low-level details. This network is trained to reproduce high level features of the simulated detector events based on input observables of incident particles. This allows the dramatic increase of simulation speed. We demonstrate that this approach provides simulation precision which is consistent with the baseline and discuss possible implications of these results.

* In proceedings of 10th International Workshop on Ring Imaging Cherenkov Detectors 

  Click for Model/Code and Paper
Muon Trigger for Mobile Phones

Sep 25, 2017
Maxim Borisyak, Michail Usvyatsov, Michael Mulhearn, Chase Shimmin, Andrey Ustyuzhanin

The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth's atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.


  Click for Model/Code and Paper
$(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Jun 14, 2019
Maxim Borisyak, Artem Ryzhikov, Andrey Ustyuzhanin, Denis Derkach, Fedor Ratnikov, Olga Mineeva

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.


  Click for Model/Code and Paper
Fast Data-Driven Simulation of Cherenkov Detectors Using Generative Adversarial Networks

May 28, 2019
Artem Maevskiy, Denis Derkach, Nikita Kazeev, Andrey Ustyuzhanin, Maksim Artemev, Lucio Anderlini

The increasing luminosities of future Large Hadron Collider runs and next generation of collider experiments will require an unprecedented amount of simulated events to be produced. Such large scale productions are extremely demanding in terms of computing resources. Thus new approaches to event generation and simulation of detector responses are needed. In LHCb, the accurate simulation of Cherenkov detectors takes a sizeable fraction of CPU time. An alternative approach is described here, when one generates high-level reconstructed observables using a generative neural network to bypass low level details. This network is trained to reproduce the particle species likelihood function values based on the track kinematic parameters and detector occupancy. The fast simulation is trained using real data samples collected by LHCb during run 2. We demonstrate that this approach provides high-fidelity results.

* Proceedings for 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research 

  Click for Model/Code and Paper
Generative Models for Fast Calorimeter Simulation.LHCb case

Dec 04, 2018
Viktoria Chekalina, Elena Orlova, Fedor Ratnikov, Dmitry Ulyanov, Andrey Ustyuzhanin, Egor Zakharov

Simulation is one of the key components in high energy physics. Historically it relies on the Monte Carlo methods which require a tremendous amount of computation resources. These methods may have difficulties with the expected High Luminosity Large Hadron Collider (HL LHC) need, so the experiment is in urgent need of new fast simulation techniques. We introduce a new Deep Learning framework based on Generative Adversarial Networks which can be faster than traditional simulation methods by 5 order of magnitude with reasonable simulation accuracy. This approach will allow physicists to produce a big enough amount of simulated data needed by the next HL LHC experiments using limited computing resources.

* Proceedings of the presentation at CHEP 2018 Conference 

  Click for Model/Code and Paper
Space Navigator: a Tool for the Optimization of Collision Avoidance Maneuvers

Feb 06, 2019
Leonid Gremyachikh, Dmitrii Dubov, Nikita Kazeev, Andrey Kulibaba, Andrey Skuratov, Anton Tereshkin, Andrey Ustyuzhanin, Lubov Shiryaeva, Sergej Shishkin

The number of space objects will grow several times in a few years due to the planned launches of constellations of thousands microsatellites. It leads to a significant increase in the threat of satellite collisions. Spacecraft must undertake collision avoidance maneuvers to mitigate the risk. According to publicly available information, conjunction events are now manually handled by operators on the Earth. The manual maneuver planning requires qualified personnel and will be impractical for constellations of thousands satellites. In this paper we propose a new modular autonomous collision avoidance system called "Space Navigator". It is based on a novel maneuver optimization approach that combines domain knowledge with Reinforcement Learning methods.

* Submitted to AAS Advances in the Astronautical Sciences, presented at IAA SciTech Forum 2018 

  Click for Model/Code and Paper
Machine Learning in High Energy Physics Community White Paper

Jul 08, 2018
Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Machine learning is an important research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas in machine learning in particle physics with a roadmap for their implementation, software and hardware resource requirements, collaborative initiatives with the data science community, academia and industry, and training the particle physics community in data science. The main objective of the document is to connect and motivate these areas of research and development with the physics drivers of the High-Luminosity Large Hadron Collider and future neutrino experiments and identify the resource needs for their implementation. Additionally we identify areas where collaboration with external communities will be of great benefit.

* Editors: Sergei Gleyzer, Paul Seyfert and Steven Schramm 

  Click for Model/Code and Paper