Character-based sequence labeling framework is flexible and efficient for Chinese word segmentation (CWS). Recently, many character-based neural models have been applied to CWS. While they obtain good performance, they have two obvious weaknesses. The first is that they heavily rely on manually designed bigram feature, i.e. they are not good at capturing n-gram features automatically. The second is that they make no use of full word information. For the first weakness, we propose a convolutional neural model, which is able to capture rich n-gram features without any feature engineering. For the second one, we propose an effective approach to integrate the proposed model with word embeddings. We evaluate the model on two benchmark datasets: PKU and MSR. Without any feature engineering, the model obtains competitive performance -- 95.7% on PKU and 97.3% on MSR. Armed with word embeddings, the model achieves state-of-the-art performance on both datasets -- 96.5% on PKU and 98.0% on MSR, without using any external labeled resource. Click to Read Paper
Sequence-to-sequence attention-based models integrate an acoustic, pronunciation and language model into a single neural network, which make them very suitable for multilingual automatic speech recognition (ASR). In this paper, we are concerned with multilingual speech recognition on low-resource languages by a single Transformer, one of sequence-to-sequence attention-based models. Sub-words are employed as the multilingual modeling unit without using any pronunciation lexicon. First, we show that a single multilingual ASR Transformer performs well on low-resource languages despite of some language confusion. We then look at incorporating language information into the model by inserting the language symbol at the beginning or at the end of the original sub-words sequence under the condition of language information being known during training. Experiments on CALLHOME datasets demonstrate that the multilingual ASR Transformer with the language symbol at the end performs better and can obtain relatively 10.5\% average word error rate (WER) reduction compared to SHL-MLSTM with residual learning. We go on to show that, assuming the language information being known during training and testing, about relatively 12.4\% average WER reduction can be observed compared to SHL-MLSTM with residual learning through giving the language symbol as the sentence start token. Click to Read Paper
Scene text recognition has attracted a great many researches for decades due to its importance to various applications. Existing sequence-to-sequence (seq2seq) recognizers mainly adopt Connectionist Temporal Classification (CTC) or Attention based Recurrent or Convolutional networks, and have made great progresses in scene text recognition. However, we observe that current methods suffer from slow training speed because the internal recurrence of RNNs limits training parallelization, and high complexity because of stacking too many convolutional layers in order to extract features over long input sequence. To tackle the above problems, this paper presents a no-recurrence seq2seq model, named NRTR, that relies only on the attention mechanism dispensing with recurrences and convolutions entirely. NRTR consists of an encoder that transforms an input sequence to the hidden feature representation, and a decoder that generates an output sequence of characters from the encoder output. Both of the encoder and the decoder are based on self-attention module to learn positional dependencies, which could be trained with more parallelization and less complexity. Besides, we also propose a modality-transform block to effectively transform the input image to the corresponding sequence, which could be used by the encoder directly. NRTR is end-to-end trainable and is not confined to any predefined lexicon. Extensive experiments on various benchmarks, including the IIIT5K, SVT and ICDAR datasets, show that NRTR achieves the state-of-the-art or highly-competitive performances in both lexicon-free and lexicon-based scene text recognition tasks, while requiring only one order of magnitude less time for model training compared to current methods. Click to Read Paper
Machine learning systems based on deep neural networks (DNNs) have gained mainstream adoption in many applications. Recently, however, DNNs are shown to be vulnerable to adversarial example attacks with slight perturbations on the inputs. Existing defense mechanisms against such attacks try to improve the overall robustness of the system, but they do not differentiate different targeted attacks even though the corresponding impacts may vary significantly. To tackle this problem, we propose a novel configurable defense mechanism in this work, wherein we are able to flexibly tune the robustness of the system against different targeted attacks to satisfy application requirements. This is achieved by refining the DNN loss function with an attack sensitive matrix to represent the impacts of different targeted attacks. Experimental results on CIFAR-10 and GTSRB data sets demonstrate the efficacy of the proposed solution. Click to Read Paper
Deep neural networks have shown superior performance in many regimes to remember familiar patterns with large amounts of data. However, the standard supervised deep learning paradigm is still limited when facing the need to learn new concepts efficiently from scarce data. In this paper, we present a memory-augmented neural network which is motivated by the process of human concept learning. The training procedure, imitating the concept formation course of human, learns how to distinguish samples from different classes and aggregate samples of the same kind. In order to better utilize the advantages originated from the human behavior, we propose a sequential process, during which the network should decide how to remember each sample at every step. In this sequential process, a stable and interactive memory serves as an important module. We validate our model in some typical one-shot learning tasks and also an exploratory outlier detection problem. In all the experiments, our model gets highly competitive to reach or outperform those strong baselines. Click to Read Paper
Visual reasoning is a special visual question answering problem that is multi-step and compositional by nature, and also requires intensive text-vision interactions. We propose CMM: Cascaded Mutual Modulation as a novel end-to-end visual reasoning model. CMM includes a multi-step comprehension process for both question and image. In each step, we use a Feature-wise Linear Modulation (FiLM) technique to enable textual/visual pipeline to mutually control each other. Experiments show that CMM significantly outperforms most related models, and reach state-of-the-arts on two visual reasoning benchmarks: CLEVR and NLVR, collected from both synthetic and natural languages. Ablation studies confirm that both our multistep framework and our visual-guided language modulation are critical to the task. Our code is available at Click to Read Paper
In this paper, we propose a single-channel speech dereverberation system (DeReGAT) based on convolutional, bidirectional long short-term memory and deep feed-forward neural network (CBLDNN) with generative adversarial training (GAT). In order to obtain better speech quality instead of only minimizing a mean square error (MSE), GAT is employed to make the dereverberated speech indistinguishable form the clean samples. Besides, our system can deal with wide range reverberation and be well adapted to variant environments. The experimental results show that the proposed model outperforms weighted prediction error (WPE) and deep neural network-based systems. In addition, DeReGAT is extended to an online speech dereverberation scenario, which reports comparable performance with the offline case. Click to Read Paper
Sequence-to-sequence attention-based models have recently shown very promising results on automatic speech recognition (ASR) tasks, which integrate an acoustic, pronunciation and language model into a single neural network. In these models, the Transformer, a new sequence-to-sequence attention-based model relying entirely on self-attention without using RNNs or convolutions, achieves a new single-model state-of-the-art BLEU on neural machine translation (NMT) tasks. Since the outstanding performance of the Transformer, we extend it to speech and concentrate on it as the basic architecture of sequence-to-sequence attention-based model on Mandarin Chinese ASR tasks. Furthermore, we investigate a comparison between syllable based model and context-independent phoneme (CI-phoneme) based model with the Transformer in Mandarin Chinese. Additionally, a greedy cascading decoder with the Transformer is proposed for mapping CI-phoneme sequences and syllable sequences into word sequences. Experiments on HKUST datasets demonstrate that syllable based model with the Transformer performs better than CI-phoneme based counterpart, and achieves a character error rate (CER) of \emph{$28.77\%$}, which is competitive to the state-of-the-art CER of $28.0\%$ by the joint CTC-attention based encoder-decoder network. Click to Read Paper
The choice of modeling units is critical to automatic speech recognition (ASR) tasks. Conventional ASR systems typically choose context-dependent states (CD-states) or context-dependent phonemes (CD-phonemes) as their modeling units. However, it has been challenged by sequence-to-sequence attention-based models, which integrate an acoustic, pronunciation and language model into a single neural network. On English ASR tasks, previous attempts have already shown that the modeling unit of graphemes can outperform that of phonemes by sequence-to-sequence attention-based model. In this paper, we are concerned with modeling units on Mandarin Chinese ASR tasks using sequence-to-sequence attention-based models with the Transformer. Five modeling units are explored including context-independent phonemes (CI-phonemes), syllables, words, sub-words and characters. Experiments on HKUST datasets demonstrate that the lexicon free modeling units can outperform lexicon related modeling units in terms of character error rate (CER). Among five modeling units, character based model performs best and establishes a new state-of-the-art CER of $26.64\%$ on HKUST datasets without a hand-designed lexicon and an extra language model integration, which corresponds to a $4.8\%$ relative improvement over the existing best CER of $28.0\%$ by the joint CTC-attention based encoder-decoder network. Click to Read Paper
End-to-end models have been showing superiority in Automatic Speech Recognition (ASR). At the same time, the capacity of streaming recognition has become a growing requirement for end-to-end models. Following these trends, an encoder-decoder recurrent neural network called Recurrent Neural Aligner (RNA) has been freshly proposed and shown its competitiveness on two English ASR tasks. However, it is not clear if RNA can be further improved and applied to other spoken language. In this work, we explore the applicability of RNA in Mandarin Chinese and present four effective extensions: In the encoder, we redesign the temporal down-sampling and introduce a powerful convolutional structure. In the decoder, we utilize a regularizer to smooth the output distribution and conduct joint training with a language model. On two Mandarin Chinese conversational telephone speech recognition (MTS) datasets, our Extended-RNA obtains promising performance. Particularly, it achieves 27.7% character error rate (CER), which is superior to current state-of-the-art result on the popular HKUST task. Click to Read Paper
Movies provide us with a mass of visual content as well as attracting stories. Existing methods have illustrated that understanding movie stories through only visual content is still a hard problem. In this paper, for answering questions about movies, we put forward a Layered Memory Network (LMN) that represents frame-level and clip-level movie content by the Static Word Memory module and the Dynamic Subtitle Memory module, respectively. Particularly, we firstly extract words and sentences from the training movie subtitles. Then the hierarchically formed movie representations, which are learned from LMN, not only encode the correspondence between words and visual content inside frames, but also encode the temporal alignment between sentences and frames inside movie clips. We also extend our LMN model into three variant frameworks to illustrate the good extendable capabilities. We conduct extensive experiments on the MovieQA dataset. With only visual content as inputs, LMN with frame-level representation obtains a large performance improvement. When incorporating subtitles into LMN to form the clip-level representation, we achieve the state-of-the-art performance on the online evaluation task of 'Video+Subtitles'. The good performance successfully demonstrates that the proposed framework of LMN is effective and the hierarchically formed movie representations have good potential for the applications of movie question answering. Click to Read Paper
Unsupervised neural machine translation (NMT) is a recently proposed approach for machine translation which aims to train the model without using any labeled data. The models proposed for unsupervised NMT often use only one shared encoder to map the pairs of sentences from different languages to a shared-latent space, which is weak in keeping the unique and internal characteristics of each language, such as the style, terminology, and sentence structure. To address this issue, we introduce an extension by utilizing two independent encoders but sharing some partial weights which are responsible for extracting high-level representations of the input sentences. Besides, two different generative adversarial networks (GANs), namely the local GAN and global GAN, are proposed to enhance the cross-language translation. With this new approach, we achieve significant improvements on English-German, English-French and Chinese-to-English translation tasks. Click to Read Paper
This paper proposes an approach for applying GANs to NMT. We build a conditional sequence generative adversarial net which comprises of two adversarial sub models, a generator and a discriminator. The generator aims to generate sentences which are hard to be discriminated from human-translated sentences (i.e., the golden target sentences), And the discriminator makes efforts to discriminate the machine-generated sentences from human-translated ones. The two sub models play a mini-max game and achieve the win-win situation when they reach a Nash Equilibrium. Additionally, the static sentence-level BLEU is utilized as the reinforced objective for the generator, which biases the generation towards high BLEU points. During training, both the dynamic discriminator and the static BLEU objective are employed to evaluate the generated sentences and feedback the evaluations to guide the learning of the generator. Experimental results show that the proposed model consistently outperforms the traditional RNNSearch and the newly emerged state-of-the-art Transformer on English-German and Chinese-English translation tasks. Click to Read Paper
Electron Cryo-Tomography (ECT) allows 3D visualization of subcellular structures at the submolecular resolution in close to the native state. However, due to the high degree of structural complexity and imaging limits, the automatic segmentation of cellular components from ECT images is very difficult. To complement and speed up existing segmentation methods, it is desirable to develop a generic cell component segmentation method that is 1) not specific to particular types of cellular components, 2) able to segment unknown cellular components, 3) fully unsupervised and does not rely on the availability of training data. As an important step towards this goal, in this paper, we propose a saliency detection method that computes the likelihood that a subregion in a tomogram stands out from the background. Our method consists of four steps: supervoxel over-segmentation, feature extraction, feature matrix decomposition, and computation of saliency. The method produces a distribution map that represents the regions' saliency in tomograms. Our experiments show that our method can successfully label most salient regions detected by a human observer, and able to filter out regions not containing cellular components. Therefore, our method can remove the majority of the background region, and significantly speed up the subsequent processing of segmentation and recognition of cellular components captured by ECT. Click to Read Paper
Machine learning systems based on deep neural networks, being able to produce state-of-the-art results on various perception tasks, have gained mainstream adoption in many applications. However, they are shown to be vulnerable to adversarial example attack, which generates malicious output by adding slight perturbations to the input. Previous adversarial example crafting methods, however, use simple metrics to evaluate the distances between the original examples and the adversarial ones, which could be easily detected by human eyes. In addition, these attacks are often not robust due to the inevitable noises and deviation in the physical world. In this work, we present a new adversarial example attack crafting method, which takes the human perceptual system into consideration and maximizes the noise tolerance of the crafted adversarial example. Experimental results demonstrate the efficacy of the proposed technique. Click to Read Paper
Generative Adversarial Nets (GANs) have shown promise in image generation and semi-supervised learning (SSL). However, existing GANs in SSL have two problems: (1) the generator and the discriminator (i.e. the classifier) may not be optimal at the same time; and (2) the generator cannot control the semantics of the generated samples. The problems essentially arise from the two-player formulation, where a single discriminator shares incompatible roles of identifying fake samples and predicting labels and it only estimates the data without considering the labels. To address the problems, we present triple generative adversarial net (Triple-GAN), which consists of three players---a generator, a discriminator and a classifier. The generator and the classifier characterize the conditional distributions between images and labels, and the discriminator solely focuses on identifying fake image-label pairs. We design compatible utilities to ensure that the distributions characterized by the classifier and the generator both converge to the data distribution. Our results on various datasets demonstrate that Triple-GAN as a unified model can simultaneously (1) achieve the state-of-the-art classification results among deep generative models, and (2) disentangle the classes and styles of the input and transfer smoothly in the data space via interpolation in the latent space class-conditionally. Click to Read Paper
As one of the most popular classifiers, linear SVMs still have challenges in dealing with very large-scale problems, even though linear or sub-linear algorithms have been developed recently on single machines. Parallel computing methods have been developed for learning large-scale SVMs. However, existing methods rely on solving local sub-optimization problems. In this paper, we develop a novel parallel algorithm for learning large-scale linear SVM. Our approach is based on a data augmentation equivalent formulation, which casts the problem of learning SVM as a Bayesian inference problem, for which we can develop very efficient parallel sampling methods. We provide empirical results for this parallel sampling SVM, and provide extensions for SVR, non-linear kernels, and provide a parallel implementation of the Crammer and Singer model. This approach is very promising in its own right, and further is a very useful technique to parallelize a broader family of general maximum-margin models. Click to Read Paper
Recently, end-to-end memory networks have shown promising results on Question Answering task, which encode the past facts into an explicit memory and perform reasoning ability by making multiple computational steps on the memory. However, memory networks conduct the reasoning on sentence-level memory to output coarse semantic vectors and do not further take any attention mechanism to focus on words, which may lead to the model lose some detail information, especially when the answers are rare or unknown words. In this paper, we propose a novel Hierarchical Memory Networks, dubbed HMN. First, we encode the past facts into sentence-level memory and word-level memory respectively. Then, (k)-max pooling is exploited following reasoning module on the sentence-level memory to sample the (k) most relevant sentences to a question and feed these sentences into attention mechanism on the word-level memory to focus the words in the selected sentences. Finally, the prediction is jointly learned over the outputs of the sentence-level reasoning module and the word-level attention mechanism. The experimental results demonstrate that our approach successfully conducts answer selection on unknown words and achieves a better performance than memory networks. Click to Read Paper
Previous attempts for data augmentation are designed manually, and the augmentation policies are dataset-specific. Recently, an automatic data augmentation approach, named AutoAugment, is proposed using reinforcement learning. AutoAugment searches for the augmentation polices in the discrete search space, which may lead to a sub-optimal solution. In this paper, we employ the Augmented Random Search method (ARS) to improve the performance of AutoAugment. Our key contribution is to change the discrete search space to continuous space, which will improve the searching performance and maintain the diversities between sub-policies. With the proposed method, state-of-the-art accuracies are achieved on CIFAR-10, CIFAR-100, and ImageNet (without additional data). Our code is available at Click to Read Paper
Deep generative models have shown promising results in generating realistic images, but it is still non-trivial to generate images with complicated structures. The main reason is that most of the current generative models fail to explore the structures in the images including spatial layout and semantic relations between objects. To address this issue, we propose a novel deep structured generative model which boosts generative adversarial networks (GANs) with the aid of structure information. In particular, the layout or structure of the scene is encoded by a stochastic and-or graph (sAOG), in which the terminal nodes represent single objects and edges represent relations between objects. With the sAOG appropriately harnessed, our model can successfully capture the intrinsic structure in the scenes and generate images of complicated scenes accordingly. Furthermore, a detection network is introduced to infer scene structures from a image. Experimental results demonstrate the effectiveness of our proposed method on both modeling the intrinsic structures, and generating realistic images. Click to Read Paper