Research papers and code for "Bolei Zhou":
This is the Proceedings of AAAI 2019 Workshop on Network Interpretability for Deep Learning

Click to Read Paper and Get Code
Recently, there has been rising interest in Bayesian optimization -- the optimization of an unknown function with assumptions usually expressed by a Gaussian Process (GP) prior. We study an optimization strategy that directly uses an estimate of the argmax of the function. This strategy offers both practical and theoretical advantages: no tradeoff parameter needs to be selected, and, moreover, we establish close connections to the popular GP-UCB and GP-PI strategies. Our approach can be understood as automatically and adaptively trading off exploration and exploitation in GP-UCB and GP-PI. We illustrate the effects of this adaptive tuning via bounds on the regret as well as an extensive empirical evaluation on robotics and vision tasks, demonstrating the robustness of this strategy for a range of performance criteria.

* Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS) 2016, Cadiz, Spain
Click to Read Paper and Get Code
Discovering visual knowledge from weakly labeled data is crucial to scale up computer vision recognition system, since it is expensive to obtain fully labeled data for a large number of concept categories. In this paper, we propose ConceptLearner, which is a scalable approach to discover visual concepts from weakly labeled image collections. Thousands of visual concept detectors are learned automatically, without human in the loop for additional annotation. We show that these learned detectors could be applied to recognize concepts at image-level and to detect concepts at image region-level accurately. Under domain-specific supervision, we further evaluate the learned concepts for scene recognition on SUN database and for object detection on Pascal VOC 2007. ConceptLearner shows promising performance compared to fully supervised and weakly supervised methods.

* 9 pages, 8 figures, 3 tables
Click to Read Paper and Get Code
Despite the recent advance of Generative Adversarial Networks (GANs) in high-fidelity image synthesis, there lacks enough understandings on how GANs are able to map the latent code sampled from a random distribution to a photo-realistic image. Previous work assumes the latent space learned by GAN follows a distributed representation but observes the vector arithmetic phenomenon of the output's semantics in latent space. In this work, we interpret the semantics hidden in the latent space of well-trained GANs. We find that the latent code for well-trained generative models, such as ProgressiveGAN and StyleGAN, actually learns a disentangled representation after some linear transformations. We make a rigorous analysis on the encoding of various semantics in the latent space as well as their properties, and then study how these semantics are correlated to each other. Based on our analysis, we propose a simple and general technique, called InterFaceGAN, for semantic face editing in latent space. Given a synthesized face, we are able to faithfully edit its various attributes such as pose, expression, age, presence of eyeglasses, without retraining the GAN model. Furthermore, we show that even the artifacts occurred in output images are able to be fixed using same approach. Extensive results suggest that learning to synthesize faces spontaneously brings a disentangled and controllable facial attribute representation

* 19 pages, 19 figures
Click to Read Paper and Get Code
The advance of Generative Adversarial Networks (GANs) enables realistic face image synthesis. However, synthesizing face images that preserve facial identity as well as have high diversity within each identity remains challenging. To address this problem, we present FaceFeat-GAN, a novel generative model that improves both image quality and diversity by using two stages. Unlike existing single-stage models that map random noise to image directly, our two-stage synthesis includes the first stage of diverse feature generation and the second stage of feature-to-image rendering. The competitions between generators and discriminators are carefully designed in both stages with different objective functions. Specially, in the first stage, they compete in the feature domain to synthesize various facial features rather than images. In the second stage, they compete in the image domain to render photo-realistic images that contain high diversity but preserve identity. Extensive experiments show that FaceFeat-GAN generates images that not only retain identity information but also have high diversity and quality, significantly outperforming previous methods.

* 12 pages and 6 figures
Click to Read Paper and Get Code
Temporal relational reasoning, the ability to link meaningful transformations of objects or entities over time, is a fundamental property of intelligent species. In this paper, we introduce an effective and interpretable network module, the Temporal Relation Network (TRN), designed to learn and reason about temporal dependencies between video frames at multiple time scales. We evaluate TRN-equipped networks on activity recognition tasks using three recent video datasets - Something-Something, Jester, and Charades - which fundamentally depend on temporal relational reasoning. Our results demonstrate that the proposed TRN gives convolutional neural networks a remarkable capacity to discover temporal relations in videos. Through only sparsely sampled video frames, TRN-equipped networks can accurately predict human-object interactions in the Something-Something dataset and identify various human gestures on the Jester dataset with very competitive performance. TRN-equipped networks also outperform two-stream networks and 3D convolution networks in recognizing daily activities in the Charades dataset. Further analyses show that the models learn intuitive and interpretable visual common sense knowledge in videos.

* camera-ready version for ECCV'18
Click to Read Paper and Get Code
The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.

* *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figures
Click to Read Paper and Get Code
We revisit the importance of the individual units in Convolutional Neural Networks (CNNs) for visual recognition. By conducting unit ablation experiments on CNNs trained on large scale image datasets, we demonstrate that, though ablating any individual unit does not hurt overall classification accuracy, it does lead to significant damage on the accuracy of specific classes. This result shows that an individual unit is specialized to encode information relevant to a subset of classes. We compute the correlation between the accuracy drop under unit ablation and various attributes of an individual unit such as class selectivity and weight L1 norm. We confirm that unit attributes such as class selectivity are a poor predictor for impact on overall accuracy as found previously in recent work \cite{morcos2018importance}. However, our results show that class selectivity along with other attributes are good predictors of the importance of one unit to individual classes. We evaluate the impact of random rotation, batch normalization, and dropout to the importance of units to specific classes. Our results show that units with high selectivity play an important role in network classification power at the individual class level. Understanding and interpreting the behavior of these units is necessary and meaningful.

Click to Read Paper and Get Code
Convolutional Neural Network (CNN) has been successful in image recognition tasks, and recent works shed lights on how CNN separates different classes with the learned inter-class knowledge through visualization. In this work, we instead visualize the intra-class knowledge inside CNN to better understand how an object class is represented in the fully-connected layers. To invert the intra-class knowledge into more interpretable images, we propose a non-parametric patch prior upon previous CNN visualization models. With it, we show how different "styles" of templates for an object class are organized by CNN in terms of location and content, and represented in a hierarchical and ensemble way. Moreover, such intra-class knowledge can be used in many interesting applications, e.g. style-based image retrieval and style-based object completion.

* tech report for: http://vision03.csail.mit.edu/cnn_art/index.html
Click to Read Paper and Get Code
Video inpainting, which aims at filling in missing regions of a video, remains challenging due to the difficulty of preserving the precise spatial and temporal coherence of video contents. In this work we propose a novel flow-guided video inpainting approach. Rather than filling in the RGB pixels of each frame directly, we consider video inpainting as a pixel propagation problem. We first synthesize a spatially and temporally coherent optical flow field across video frames using a newly designed Deep Flow Completion network. Then the synthesized flow field is used to guide the propagation of pixels to fill up the missing regions in the video. Specifically, the Deep Flow Completion network follows a coarse-to-fine refinement to complete the flow fields, while their quality is further improved by hard flow example mining. Following the guide of the completed flow, the missing video regions can be filled up precisely. Our method is evaluated on DAVIS and YouTube-VOS datasets qualitatively and quantitatively, achieving the state-of-the-art performance in terms of inpainting quality and speed.

* cvpr'19
Click to Read Paper and Get Code
Object detection, scene graph generation and region captioning, which are three scene understanding tasks at different semantic levels, are tied together: scene graphs are generated on top of objects detected in an image with their pairwise relationship predicted, while region captioning gives a language description of the objects, their attributes, relations, and other context information. In this work, to leverage the mutual connections across semantic levels, we propose a novel neural network model, termed as Multi-level Scene Description Network (denoted as MSDN), to solve the three vision tasks jointly in an end-to-end manner. Objects, phrases, and caption regions are first aligned with a dynamic graph based on their spatial and semantic connections. Then a feature refining structure is used to pass messages across the three levels of semantic tasks through the graph. We benchmark the learned model on three tasks, and show the joint learning across three tasks with our proposed method can bring mutual improvements over previous models. Particularly, on the scene graph generation task, our proposed method outperforms the state-of-art method with more than 3% margin.

* accepted by ICCV 2017
Click to Read Paper and Get Code
Sensing surroundings is ubiquitous and effortless to humans: It takes a single glance to extract the spatial configuration of objects and the free space from the scene. To help machine vision with spatial understanding capabilities, we introduce the View Parsing Network (VPN) for cross-view semantic segmentation. In this framework, the first-view observations are parsed into a top-down-view semantic map indicating precise object locations. VPN contains a view transformer module, designed to aggregate the first-view observations taken from multiple angles and modalities, in order to draw a bird-view semantic map. We evaluate the VPN framework for cross-view segmentation on two types of environments, indoors and driving-traffic scenes. Experimental results show that our model accurately predicts the top-down-view semantic mask of the visible objects from the first-view observations, as well as infer the location of contextually-relevant objects even if they are invisible.

Click to Read Paper and Get Code
Humans recognize the visual world at multiple levels: we effortlessly categorize scenes and detect objects inside, while also identifying the textures and surfaces of the objects along with their different compositional parts. In this paper, we study a new task called Unified Perceptual Parsing, which requires the machine vision systems to recognize as many visual concepts as possible from a given image. A multi-task framework called UPerNet and a training strategy are developed to learn from heterogeneous image annotations. We benchmark our framework on Unified Perceptual Parsing and show that it is able to effectively segment a wide range of concepts from images. The trained networks are further applied to discover visual knowledge in natural scenes. Models are available at \url{https://github.com/CSAILVision/unifiedparsing}.

* Accepted to European Conference on Computer Vision (ECCV) 2018
Click to Read Paper and Get Code
We propose a general framework called Network Dissection for quantifying the interpretability of latent representations of CNNs by evaluating the alignment between individual hidden units and a set of semantic concepts. Given any CNN model, the proposed method draws on a broad data set of visual concepts to score the semantics of hidden units at each intermediate convolutional layer. The units with semantics are given labels across a range of objects, parts, scenes, textures, materials, and colors. We use the proposed method to test the hypothesis that interpretability of units is equivalent to random linear combinations of units, then we apply our method to compare the latent representations of various networks when trained to solve different supervised and self-supervised training tasks. We further analyze the effect of training iterations, compare networks trained with different initializations, examine the impact of network depth and width, and measure the effect of dropout and batch normalization on the interpretability of deep visual representations. We demonstrate that the proposed method can shed light on characteristics of CNN models and training methods that go beyond measurements of their discriminative power.

* First two authors contributed equally. Oral presentation at CVPR 2017
Click to Read Paper and Get Code
Recognizing arbitrary objects in the wild has been a challenging problem due to the limitations of existing classification models and datasets. In this paper, we propose a new task that aims at parsing scenes with a large and open vocabulary, and several evaluation metrics are explored for this problem. Our proposed approach to this problem is a joint image pixel and word concept embeddings framework, where word concepts are connected by semantic relations. We validate the open vocabulary prediction ability of our framework on ADE20K dataset which covers a wide variety of scenes and objects. We further explore the trained joint embedding space to show its interpretability.

Click to Read Paper and Get Code
The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification at tasks such as object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories and attributes, comprising a quasi-exhaustive list of the types of environments encountered in the world. Using state of the art Convolutional Neural Networks, we provide impressive baseline performances at scene classification. With its high-coverage and high-diversity of exemplars, the Places Database offers an ecosystem to guide future progress on currently intractable visual recognition problems.

Click to Read Paper and Get Code
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .

* One comparison method's scores are put into the correct column, and a new experiment of generating attention map is added
Click to Read Paper and Get Code
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014, which is remarkably close to the 34.2% top-5 error achieved by a fully supervised CNN approach. We demonstrate that our network is able to localize the discriminative image regions on a variety of tasks despite not being trained for them

Click to Read Paper and Get Code
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.

* 12 pages, ICLR 2015 conference paper
Click to Read Paper and Get Code
Searching persons in large-scale image databases with the query of natural language description has important applications in video surveillance. Existing methods mainly focused on searching persons with image-based or attribute-based queries, which have major limitations for a practical usage. In this paper, we study the problem of person search with natural language description. Given the textual description of a person, the algorithm of the person search is required to rank all the samples in the person database then retrieve the most relevant sample corresponding to the queried description. Since there is no person dataset or benchmark with textual description available, we collect a large-scale person description dataset with detailed natural language annotations and person samples from various sources, termed as CUHK Person Description Dataset (CUHK-PEDES). A wide range of possible models and baselines have been evaluated and compared on the person search benchmark. An Recurrent Neural Network with Gated Neural Attention mechanism (GNA-RNN) is proposed to establish the state-of-the art performance on person search.

Click to Read Paper and Get Code