Models, code, and papers for "Bolin Liu":

Deep Learning with Inaccurate Training Data for Image Restoration

Nov 18, 2018
Bolin Liu, Xiao Shu, Xiaolin Wu

In many applications of deep learning, particularly those in image restoration, it is either very difficult, prohibitively expensive, or outright impossible to obtain paired training data precisely as in the real world. In such cases, one is forced to use synthesized paired data to train the deep convolutional neural network (DCNN). However, due to the unavoidable generalization error in statistical learning, the synthetically trained DCNN often performs poorly on real world data. To overcome this problem, we propose a new general training method that can compensate for, to a large extent, the generalization errors of synthetically trained DCNNs.

  Click for Model/Code and Paper
Demoiréing of Camera-Captured Screen Images Using Deep Convolutional Neural Network

Apr 11, 2018
Bolin Liu, Xiao Shu, Xiaolin Wu

Taking photos of optoelectronic displays is a direct and spontaneous way of transferring data and keeping records, which is widely practiced. However, due to the analog signal interference between the pixel grids of the display screen and camera sensor array, objectionable moir\'e (alias) patterns appear in captured screen images. As the moir\'e patterns are structured and highly variant, they are difficult to be completely removed without affecting the underneath latent image. In this paper, we propose an approach of deep convolutional neural network for demoir\'eing screen photos. The proposed DCNN consists of a coarse-scale network and a fine-scale network. In the coarse-scale network, the input image is first downsampled and then processed by stacked residual blocks to remove the moir\'e artifacts. After that, the fine-scale network upsamples the demoir\'ed low-resolution image back to the original resolution. Extensive experimental results have demonstrated that the proposed technique can efficiently remove the moir\'e patterns for camera acquired screen images; the new technique outperforms the existing ones.

  Click for Model/Code and Paper
Fast Screening Algorithm for Rotation and Scale Invariant Template Matching

Jul 19, 2017
Bolin Liu, Xiao Shu, Xiaolin Wu

This paper presents a generic pre-processor for expediting conventional template matching techniques. Instead of locating the best matched patch in the reference image to a query template via exhaustive search, the proposed algorithm rules out regions with no possible matches with minimum computational efforts. While working on simple patch features, such as mean, variance and gradient, the fast pre-screening is highly discriminative. Its computational efficiency is gained by using a novel octagonal-star-shaped template and the inclusion-exclusion principle to extract and compare patch features. Moreover, it can handle arbitrary rotation and scaling of reference images effectively. Extensive experiments demonstrate that the proposed algorithm greatly reduces the search space while never missing the best match.

  Click for Model/Code and Paper
A Self-Attentional Neural Architecture for Code Completion with Multi-Task Learning

Oct 12, 2019
Fang Liu, Ge Li, Bolin Wei, Xin Xia, Ming Li, Zhiyi Fu, Zhi Jin

Code completion, one of the most useful features in the integrated development environments, can accelerate software development by suggesting the libraries, APIs, method names in real-time. Recent studies have shown that statistical language models can improve the performance of code completion tools through learning from large-scale software repositories. However, these models suffer from three major drawbacks: a) The hierarchical structural information of the programs is not fully utilized in the program's representation; b) In programs, the semantic relationships can be very long, existing LSTM based language models are not sufficient to model the long-term dependency. c) Existing approaches perform a specific task in one model, which leads to the underuse of the information from related tasks. In this paper, we present a novel method that introduces the hierarchical structural information into the representation of programs by considering the path from the predicting node to the root node. To capture the long-term dependency in the input programs, we apply Transformer-XL network as the base language model. Besides, we creatively propose a Multi-Task Learning (MTL) framework to learn two related tasks in code completion jointly, where knowledge acquired from one task could be beneficial to another task. Experiments on three real-world datasets demonstrate the effectiveness of our model when compared with state-of-the-art methods.

* There are some errors on Table 3, we need some time to get the correct values 

  Click for Model/Code and Paper
Continuous Integration of Machine Learning Models with Towards a Rigorous Yet Practical Treatment

Mar 01, 2019
Cedric Renggli, Bojan Karlaš, Bolin Ding, Feng Liu, Kevin Schawinski, Wentao Wu, Ce Zhang

Continuous integration is an indispensable step of modern software engineering practices to systematically manage the life cycles of system development. Developing a machine learning model is no difference - it is an engineering process with a life cycle, including design, implementation, tuning, testing, and deployment. However, most, if not all, existing continuous integration engines do not support machine learning as first-class citizens. In this paper, we present, to our best knowledge, the first continuous integration system for machine learning. The challenge of building is to provide rigorous guarantees, e.g., single accuracy point error tolerance with 0.999 reliability, with a practical amount of labeling effort, e.g., 2K labels per test. We design a domain specific language that allows users to specify integration conditions with reliability constraints, and develop simple novel optimizations that can lower the number of labels required by up to two orders of magnitude for test conditions popularly used in real production systems.

  Click for Model/Code and Paper
Learn-Memorize-Recall-Reduce A Robotic Cloud Computing Paradigm

Apr 18, 2017
Shaoshan Liu, Bolin Ding, Jie Tang, Dawei Sun, Zhe Zhang, Grace Tsai, Jean-Luc Gaudiot

The rise of robotic applications has led to the generation of a huge volume of unstructured data, whereas the current cloud infrastructure was designed to process limited amounts of structured data. To address this problem, we propose a learn-memorize-recall-reduce paradigm for robotic cloud computing. The learning stage converts incoming unstructured data into structured data; the memorization stage provides effective storage for the massive amount of data; the recall stage provides efficient means to retrieve the raw data; while the reduction stage provides means to make sense of this massive amount of unstructured data with limited computing resources.

* 6 pages, 7 figures 

  Click for Model/Code and Paper