Models, code, and papers for "Bryan Catanzaro":

WaveGlow: A Flow-based Generative Network for Speech Synthesis

Oct 31, 2018
Ryan Prenger, Rafael Valle, Bryan Catanzaro

In this paper we propose WaveGlow: a flow-based network capable of generating high quality speech from mel-spectrograms. WaveGlow combines insights from Glow and WaveNet in order to provide fast, efficient and high-quality audio synthesis, without the need for auto-regression. WaveGlow is implemented using only a single network, trained using only a single cost function: maximizing the likelihood of the training data, which makes the training procedure simple and stable. Our PyTorch implementation produces audio samples at a rate of more than 500 kHz on an NVIDIA V100 GPU. Mean Opinion Scores show that it delivers audio quality as good as the best publicly available WaveNet implementation. All code will be made publicly available online.

* 5 pages, 1 figure, 1 table, 13 equations 

  Click for Model/Code and Paper
Improving SAT Solver Heuristics with Graph Networks and Reinforcement Learning

Sep 26, 2019
Vitaly Kurin, Saad Godil, Shimon Whiteson, Bryan Catanzaro

We present GQSAT, a branching heuristic in a Boolean SAT solver trained with value-based reinforcement learning (RL) using Graph Neural Networks for function approximation. Solvers using GQSAT are complete SAT solvers that either provide a satisfying assignment or a proof of unsatisfiability, which is required for many SAT applications. The branching heuristic commonly used in SAT solvers today suffers from bad decisions during their warm-up period, whereas GQSAT has been trained to examine the structure of the particular problem instance to make better decisions at the beginning of the search. Training GQSAT is data efficient and does not require elaborate dataset preparation or feature engineering to train. We train GQSAT on small SAT problems using RL interfacing with an existing SAT solver. We show that GQSAT is able to reduce the number of iterations required to solve SAT problems by 2-3X, and it generalizes to unsatisfiable SAT instances, as well as to problems with 5X more variables than it was trained on. We also show that, to a lesser extent, it generalizes to SAT problems from different domains by evaluating it on graph coloring. Our experiments show that augmenting SAT solvers with agents trained with RL and graph neural networks can improve performance on the SAT search problem.


  Click for Model/Code and Paper
Practical Text Classification With Large Pre-Trained Language Models

Dec 04, 2018
Neel Kant, Raul Puri, Nikolai Yakovenko, Bryan Catanzaro

Multi-emotion sentiment classification is a natural language processing (NLP) problem with valuable use cases on real-world data. We demonstrate that large-scale unsupervised language modeling combined with finetuning offers a practical solution to this task on difficult datasets, including those with label class imbalance and domain-specific context. By training an attention-based Transformer network (Vaswani et al. 2017) on 40GB of text (Amazon reviews) (McAuley et al. 2015) and fine-tuning on the training set, our model achieves a 0.69 F1 score on the SemEval Task 1:E-c multi-dimensional emotion classification problem (Mohammad et al. 2018), based on the Plutchik wheel of emotions (Plutchik 1979). These results are competitive with state of the art models, including strong F1 scores on difficult (emotion) categories such as Fear (0.73), Disgust (0.77) and Anger (0.78), as well as competitive results on rare categories such as Anticipation (0.42) and Surprise (0.37). Furthermore, we demonstrate our application on a real world text classification task. We create a narrowly collected text dataset of real tweets on several topics, and show that our finetuned model outperforms general purpose commercially available APIs for sentiment and multidimensional emotion classification on this dataset by a significant margin. We also perform a variety of additional studies, investigating properties of deep learning architectures, datasets and algorithms for achieving practical multidimensional sentiment classification. Overall, we find that unsupervised language modeling and finetuning is a simple framework for achieving high quality results on real-world sentiment classification.

* 8 pages, submitted to AAAI 2019 

  Click for Model/Code and Paper
Large Scale Language Modeling: Converging on 40GB of Text in Four Hours

Aug 11, 2018
Raul Puri, Robert Kirby, Nikolai Yakovenko, Bryan Catanzaro

Recent work has shown how to train Convolutional Neural Networks (CNNs) rapidly on large image datasets, then transfer the knowledge gained from these models to a variety of tasks. Following [Radford 2017], in this work, we demonstrate similar scalability and transfer for Recurrent Neural Networks (RNNs) for Natural Language tasks. By utilizing mixed precision arithmetic and a 32k batch size distributed across 128 NVIDIA Tesla V100 GPUs, we are able to train a character-level 4096-dimension multiplicative LSTM (mLSTM) for unsupervised text reconstruction over 3 epochs of the 40 GB Amazon Reviews dataset in four hours. This runtime compares favorably with previous work taking one month to train the same size and configuration for one epoch over the same dataset. Converging large batch RNN models can be challenging. Recent work has suggested scaling the learning rate as a function of batch size, but we find that simply scaling the learning rate as a function of batch size leads either to significantly worse convergence or immediate divergence for this problem. We provide a learning rate schedule that allows our model to converge with a 32k batch size. Since our model converges over the Amazon Reviews dataset in hours, and our compute requirement of 128 Tesla V100 GPUs, while substantial, is commercially available, this work opens up large scale unsupervised NLP training to most commercial applications and deep learning researchers. A model can be trained over most public or private text datasets overnight.

* 8 pages; To appear in High Performance Machine Learning Workshop (HPML) 2018 

  Click for Model/Code and Paper
An Interpretable Model for Scene Graph Generation

Nov 21, 2018
Ji Zhang, Kevin Shih, Andrew Tao, Bryan Catanzaro, Ahmed Elgammal

We propose an efficient and interpretable scene graph generator. We consider three types of features: visual, spatial and semantic, and we use a late fusion strategy such that each feature's contribution can be explicitly investigated. We study the key factors about these features that have the most impact on the performance, and also visualize the learned visual features for relationships and investigate the efficacy of our model. We won the champion of the OpenImages Visual Relationship Detection Challenge on Kaggle, where we outperform the 2nd place by 5\% (20\% relatively). We believe an accurate scene graph generator is a fundamental stepping stone for higher-level vision-language tasks such as image captioning and visual QA, since it provides a semantic, structured comprehension of an image that is beyond pixels and objects.

* arXiv admin note: substantial text overlap with arXiv:1811.00662 

  Click for Model/Code and Paper
Introduction to the 1st Place Winning Model of OpenImages Relationship Detection Challenge

Nov 01, 2018
Ji Zhang, Kevin Shih, Andrew Tao, Bryan Catanzaro, Ahmed Elgammal

This article describes the model we built that achieved 1st place in the OpenImage Visual Relationship Detection Challenge on Kaggle. Three key factors contribute the most to our success: 1) language bias is a powerful baseline for this task. We build the empirical distribution $P(predicate|subject,object)$ in the training set and directly use that in testing. This baseline achieved the 2nd place when submitted; 2) spatial features are as important as visual features, especially for spatial relationships such as "under" and "inside of"; 3) It is a very effective way to fuse different features by first building separate modules for each of them, then adding their output logits before the final softmax layer. We show in ablation study that each factor can improve the performance to a non-trivial extent, and the model reaches optimal when all of them are combined.


  Click for Model/Code and Paper
Graphical Contrastive Losses for Scene Graph Generation

Mar 28, 2019
Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao, Bryan Catanzaro

Most scene graph generators use a two-stage pipeline to detect visual relationships: the first stage detects entities, and the second predicts the predicate for each entity pair using a softmax distribution. We find that such pipelines, trained with only a cross entropy loss over predicate classes, suffer from two common errors. The first, Entity Instance Confusion, occurs when the model confuses multiple instances of the same type of entity (e.g. multiple cups). The second, Proximal Relationship Ambiguity, arises when multiple subject-predicate-object triplets appear in close proximity with the same predicate, and the model struggles to infer the correct subject-object pairings (e.g. mis-pairing musicians and their instruments). We propose a set of contrastive loss formulations that specifically target these types of errors within the scene graph generation problem, collectively termed the Graphical Contrastive Losses. These losses explicitly force the model to disambiguate related and unrelated instances through margin constraints specific to each type of confusion. We further construct a relationship detector, called RelDN, using the aforementioned pipeline to demonstrate the efficacy of our proposed losses. Our model outperforms the winning method of the OpenImages Relationship Detection Challenge by 4.7\% (16.5\% relative) on the test set. We also show improved results over the best previous methods on the Visual Genome and Visual Relationship Detection datasets.


  Click for Model/Code and Paper
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Oct 05, 2019
Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro

Recent work in unsupervised language modeling demonstrates that training large neural language models advances the state of the art in Natural Language Processing applications. However, for very large models, memory constraints limit the size of models that can be practically trained. Model parallelism allows us to train larger models, because the parameters can be split across multiple processors. In this work, we implement a simple, efficient intra-layer model parallel approach that enables training state of the art transformer language models with billions of parameters. Our approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We illustrate this approach by converging an 8.3 billion parameter transformer language model using 512 GPUs, making it the largest transformer model ever trained at 24x times the size of BERT and 5.6x times the size of GPT-2. We sustain up to 15.1 PetaFLOPs per second across the entire application with 76% scaling efficiency, compared to a strong single processor baseline that sustains 39 TeraFLOPs per second, which is 30% of peak FLOPs. The model is trained on 174GB of text, requiring 12 ZettaFLOPs over 9.2 days to converge. Transferring this language model achieves state of the art (SOTA) results on the WikiText103 (10.8 compared to SOTA perplexity of 16.4) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. We release training and evaluation code, as well as the weights of our smaller portable model, for reproducibility.


  Click for Model/Code and Paper
Malware Detection by Eating a Whole EXE

Oct 25, 2017
Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro, Charles Nicholas

In this work we introduce malware detection from raw byte sequences as a fruitful research area to the larger machine learning community. Building a neural network for such a problem presents a number of interesting challenges that have not occurred in tasks such as image processing or NLP. In particular, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where batch normalization appear to hinder the learning process. We present our initial work in building a solution to tackle this problem, which has linear complexity dependence on the sequence length, and allows for interpretable sub-regions of the binary to be identified. In doing so we will discuss the many challenges in building a neural network to process data at this scale, and the methods we used to work around them.


  Click for Model/Code and Paper
Video Interpolation and Prediction with Unsupervised Landmarks

Sep 06, 2019
Kevin J. Shih, Aysegul Dundar, Animesh Garg, Robert Pottorf, Andrew Tao, Bryan Catanzaro

Prediction and interpolation for long-range video data involves the complex task of modeling motion trajectories for each visible object, occlusions and dis-occlusions, as well as appearance changes due to viewpoint and lighting. Optical flow based techniques generalize but are suitable only for short temporal ranges. Many methods opt to project the video frames to a low dimensional latent space, achieving long-range predictions. However, these latent representations are often non-interpretable, and therefore difficult to manipulate. This work poses video prediction and interpolation as unsupervised latent structure inference followed by a temporal prediction in this latent space. The latent representations capture foreground semantics without explicit supervision such as keypoints or poses. Further, as each landmark can be mapped to a coordinate indicating where a semantic part is positioned, we can reliably interpolate within the coordinate domain to achieve predictable motion interpolation. Given an image decoder capable of mapping these landmarks back to the image domain, we are able to achieve high-quality long-range video interpolation and extrapolation by operating on the landmark representation space.

* Technical Report 

  Click for Model/Code and Paper
Image Inpainting for Irregular Holes Using Partial Convolutions

Apr 20, 2018
Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang, Andrew Tao, Bryan Catanzaro

Existing deep learning based image inpainting methods use a standard convolutional network over the corrupted image, using convolutional filter responses conditioned on both valid pixels as well as the substitute values in the masked holes (typically the mean value). This often leads to artifacts such as color discrepancy and blurriness. Post-processing is usually used to reduce such artifacts, but are expensive and may fail. We propose the use of partial convolutions, where the convolution is masked and renormalized to be conditioned on only valid pixels. We further include a mechanism to automatically generate an updated mask for the next layer as part of the forward pass. Our model outperforms other methods for irregular masks. We show qualitative and quantitative comparisons with other methods to validate our approach.

* 23 pages, includes appendix 

  Click for Model/Code and Paper
cuDNN: Efficient Primitives for Deep Learning

Dec 18, 2014
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer

We present a library of efficient implementations of deep learning primitives. Deep learning workloads are computationally intensive, and optimizing their kernels is difficult and time-consuming. As parallel architectures evolve, kernels must be reoptimized, which makes maintaining codebases difficult over time. Similar issues have long been addressed in the HPC community by libraries such as the Basic Linear Algebra Subroutines (BLAS). However, there is no analogous library for deep learning. Without such a library, researchers implementing deep learning workloads on parallel processors must create and optimize their own implementations of the main computational kernels, and this work must be repeated as new parallel processors emerge. To address this problem, we have created a library similar in intent to BLAS, with optimized routines for deep learning workloads. Our implementation contains routines for GPUs, although similarly to the BLAS library, these routines could be implemented for other platforms. The library is easy to integrate into existing frameworks, and provides optimized performance and memory usage. For example, integrating cuDNN into Caffe, a popular framework for convolutional networks, improves performance by 36% on a standard model while also reducing memory consumption.


  Click for Model/Code and Paper
Improving Semantic Segmentation via Video Propagation and Label Relaxation

Dec 04, 2018
Yi Zhu, Karan Sapra, Fitsum A. Reda, Kevin J. Shih, Shawn Newsam, Andrew Tao, Bryan Catanzaro

Semantic segmentation requires large amounts of pixel-wise annotations to learn accurate models. In this paper, we present a video prediction-based methodology to scale up training sets by synthesizing new training samples in order to improve the accuracy of semantic segmentation networks. We exploit video prediction models' ability to predict future frames in order to also predict future labels. A joint propagation strategy is also proposed to alleviate mis-alignments in synthesized samples. We demonstrate that training segmentation models on datasets augmented by the synthesized samples leads to significant improvements in accuracy. Furthermore, we introduce a novel boundary label relaxation technique that makes training robust to annotation noise and propagation artifacts along object boundaries. Our proposed methods achieve state-of-the-art mIoUs of 83.5% on Cityscapes and 82.9% on CamVid. Our single model, without model ensembles, achieves 72.8% mIoU on the KITTI semantic segmentation test set, which surpasses the winning entry of the ROB challenge 2018. Our code and videos can be found at https://nv-adlr.github.io/publication/2018-Segmentation.

* First two authors contribute equally 

  Click for Model/Code and Paper
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

Aug 20, 2018
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro

We present a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to low-resolution and still far from realistic. In this work, we generate 2048x1024 visually appealing results with a novel adversarial loss, as well as new multi-scale generator and discriminator architectures. Furthermore, we extend our framework to interactive visual manipulation with two additional features. First, we incorporate object instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object category. Second, we propose a method to generate diverse results given the same input, allowing users to edit the object appearance interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the quality and the resolution of deep image synthesis and editing.

* v2: CVPR camera ready, adding more results for edge-to-photo examples 

  Click for Model/Code and Paper
Video-to-Video Synthesis

Aug 20, 2018
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, Bryan Catanzaro

We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image synthesis problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without understanding temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a novel video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generator and discriminator architectures, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our approach to future video prediction, outperforming several state-of-the-art competing systems.

* Code, models, and more results are available at https://github.com/NVIDIA/vid2vid 

  Click for Model/Code and Paper
SDCNet: Video Prediction Using Spatially-Displaced Convolution

Nov 02, 2018
Fitsum A. Reda, Guilin Liu, Kevin J. Shih, Robert Kirby, Jon Barker, David Tarjan, Andrew Tao, Bryan Catanzaro

We present an approach for high-resolution video frame prediction by conditioning on both past frames and past optical flows. Previous approaches rely on resampling past frames, guided by a learned future optical flow, or on direct generation of pixels. Resampling based on flow is insufficient because it cannot deal with disocclusions. Generative models currently lead to blurry results. Recent approaches synthesis a pixel by convolving input patches with a predicted kernel. However, their memory requirement increases with kernel size. Here, we spatially-displaced convolution (SDC) module for video frame prediction. We learn a motion vector and a kernel for each pixel and synthesize a pixel by applying the kernel at a displaced location in the source image, defined by the predicted motion vector. Our approach inherits the merits of both vector-based and kernel-based approaches, while ameliorating their respective disadvantages. We train our model on 428K unlabelled 1080p video game frames. Our approach produces state-of-the-art results, achieving an SSIM score of 0.904 on high-definition YouTube-8M videos, 0.918 on Caltech Pedestrian videos. Our model handles large motion effectively and synthesizes crisp frames with consistent motion.

* Published in ECCV 2018 

  Click for Model/Code and Paper
Partial Convolution based Padding

Nov 28, 2018
Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu, Andrew Tao, Bryan Catanzaro

In this paper, we present a simple yet effective padding scheme that can be used as a drop-in module for existing convolutional neural networks. We call it partial convolution based padding, with the intuition that the padded region can be treated as holes and the original input as non-holes. Specifically, during the convolution operation, the convolution results are re-weighted near image borders based on the ratios between the padded area and the convolution sliding window area. Extensive experiments with various deep network models on ImageNet classification and semantic segmentation demonstrate that the proposed padding scheme consistently outperforms standard zero padding with better accuracy.

* 11 pages; code is available at https://github.com/NVIDIA/partialconv 

  Click for Model/Code and Paper
Unsupervised Video Interpolation Using Cycle Consistency

Jun 13, 2019
Fitsum A. Reda, Deqing Sun, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz, Bryan Catanzaro

Learning to synthesize high frame rate videos via interpolation requires large quantities of high frame rate training videos, which, however, are scarce, especially at high resolutions. Here, we propose unsupervised techniques to synthesize high frame rate videos directly from low frame rate videos using cycle consistency. For a triplet of consecutive frames, we optimize models to minimize the discrepancy between the center frame and its cycle reconstruction, obtained by interpolating back from interpolated intermediate frames. This simple unsupervised constraint alone achieves results comparable with supervision using the ground truth intermediate frames. We further introduce a pseudo supervised loss term that enforces the interpolated frames to be consistent with predictions of a pre-trained interpolation model. The pseudo supervised loss term, used together with cycle consistency, can effectively adapt a pre-trained model to a new target domain. With no additional data and in a completely unsupervised fashion, our techniques significantly improve pre-trained models on new target domains, increasing PSNR values from 32.84dB to 33.05dB on the Slowflow and from 31.82dB to 32.53dB on the Sintel evaluation datasets.


  Click for Model/Code and Paper
Deep Speech: Scaling up end-to-end speech recognition

Dec 19, 2014
Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a "phoneme." Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems.


  Click for Model/Code and Paper