Research papers and code for "Chang Xu":
Detecting a change point is a crucial task in statistics that has been recently extended to the quantum realm. A source state generator that emits a series of single photons in a default state suffers an alteration at some point and starts to emit photons in a mutated state. The problem consists in identifying the point where the change took place. In this work, we consider a learning agent that applies Bayesian inference on experimental data to solve this problem. This learning machine adjusts the measurement over each photon according to the past experimental results finds the change position in an online fashion. Our results show that the local-detection success probability can be largely improved by using such a machine learning technique. This protocol provides a tool for improvement in many applications where a sequence of identical quantum states is required.

* Phys. Rev. A 98, 040301 (2018)
Click to Read Paper and Get Code
It is challenging to handle a large volume of labels in multi-label learning. However, existing approaches explicitly or implicitly assume that all the labels in the learning process are given, which could be easily violated in changing environments. In this paper, we define and study streaming label learning (SLL), i.e., labels are arrived on the fly, to model newly arrived labels with the help of the knowledge learned from past labels. The core of SLL is to explore and exploit the relationships between new labels and past labels and then inherit the relationship into hypotheses of labels to boost the performance of new classifiers. In specific, we use the label self-representation to model the label relationship, and SLL will be divided into two steps: a regression problem and a empirical risk minimization (ERM) problem. Both problems are simple and can be efficiently solved. We further show that SLL can generate a tighter generalization error bound for new labels than the general ERM framework with trace norm or Frobenius norm regularization. Finally, we implement extensive experiments on various benchmark datasets to validate the new setting. And results show that SLL can effectively handle the constantly emerging new labels and provides excellent classification performance.

Click to Read Paper and Get Code
This paper presents a review of the 2018 WIDER Challenge on Face and Pedestrian. The challenge focuses on the problem of precise localization of human faces and bodies, and accurate association of identities. It comprises of three tracks: (i) WIDER Face which aims at soliciting new approaches to advance the state-of-the-art in face detection, (ii) WIDER Pedestrian which aims to find effective and efficient approaches to address the problem of pedestrian detection in unconstrained environments, and (iii) WIDER Person Search which presents an exciting challenge of searching persons across 192 movies. In total, 73 teams made valid submissions to the challenge tracks. We summarize the winning solutions for all three tracks. and present discussions on open problems and potential research directions in these topics.

* Report of ECCV 2018 workshop: WIDER Face and Pedestrian Challenge
Click to Read Paper and Get Code
In machine learning and pattern recognition, feature selection has been a hot topic in the literature. Unsupervised feature selection is challenging due to the loss of labels which would supply the related information.How to define an appropriate metric is the key for feature selection. We propose a filter method for unsupervised feature selection which is based on the Confidence Machine. Confidence Machine offers an estimation of confidence on a feature'reliability. In this paper, we provide the math model of Confidence Machine in the context of feature selection, which maximizes the relevance and minimizes the redundancy of the selected feature. We compare our method against classic feature selection methods Laplacian Score, Pearson Correlation and Principal Component Analysis on benchmark data sets. The experimental results demonstrate the efficiency and effectiveness of our method.

* 10 pages
Click to Read Paper and Get Code
Authentication is a task aiming to confirm the truth between data instances and personal identities. Typical authentication applications include face recognition, person re-identification, authentication based on mobile devices and so on. The recently-emerging data-driven authentication process may encounter undesired biases, i.e., the models are often trained in one domain (e.g., for people wearing spring outfits) while required to apply in other domains (e.g., they change the clothes to summer outfits). To address this issue, we propose a novel two-stage method that disentangles the class/identity from domain-differences, and we consider multiple types of domain-difference. In the first stage, we learn disentangled representations by a one-versus-rest disentangle learning (OVRDL) mechanism. In the second stage, we improve the disentanglement by an additive adversarial learning (AAL) mechanism. Moreover, we discuss the necessity to avoid a learning dilemma due to disentangling causally related types of domain-difference. Comprehensive evaluation results demonstrate the effectiveness and superiority of the proposed method.

* IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'2019)
Click to Read Paper and Get Code
It is practical to assume that an individual view is unlikely to be sufficient for effective multi-view learning. Therefore, integration of multi-view information is both valuable and necessary. In this paper, we propose the Multi-view Intact Space Learning (MISL) algorithm, which integrates the encoded complementary information in multiple views to discover a latent intact representation of the data. Even though each view on its own is insufficient, we show theoretically that by combing multiple views we can obtain abundant information for latent intact space learning. Employing the Cauchy loss (a technique used in statistical learning) as the error measurement strengthens robustness to outliers. We propose a new definition of multi-view stability and then derive the generalization error bound based on multi-view stability and Rademacher complexity, and show that the complementarity between multiple views is beneficial for the stability and generalization. MISL is efficiently optimized using a novel Iteratively Reweight Residuals (IRR) technique, whose convergence is theoretically analyzed. Experiments on synthetic data and real-world datasets demonstrate that MISL is an effective and promising algorithm for practical applications.

Click to Read Paper and Get Code
An underlying assumption in conventional multi-view learning algorithms is that all views can be simultaneously accessed. However, due to various factors when collecting and pre-processing data from different views, the streaming view setting, in which views arrive in a streaming manner, is becoming more common. By assuming that the subspaces of a multi-view model trained over past views are stable, here we fine tune their combination weights such that the well-trained multi-view model is compatible with new views. This largely overcomes the burden of learning new view functions and updating past view functions. We theoretically examine convergence issues and the influence of streaming views in the proposed algorithm. Experimental results on real-world datasets suggest that studying the streaming views problem in multi-view learning is significant and that the proposed algorithm can effectively handle streaming views in different applications.

Click to Read Paper and Get Code
In recent years, a great many methods of learning from multi-view data by considering the diversity of different views have been proposed. These views may be obtained from multiple sources or different feature subsets. In trying to organize and highlight similarities and differences between the variety of multi-view learning approaches, we review a number of representative multi-view learning algorithms in different areas and classify them into three groups: 1) co-training, 2) multiple kernel learning, and 3) subspace learning. Notably, co-training style algorithms train alternately to maximize the mutual agreement on two distinct views of the data; multiple kernel learning algorithms exploit kernels that naturally correspond to different views and combine kernels either linearly or non-linearly to improve learning performance; and subspace learning algorithms aim to obtain a latent subspace shared by multiple views by assuming that the input views are generated from this latent subspace. Though there is significant variance in the approaches to integrating multiple views to improve learning performance, they mainly exploit either the consensus principle or the complementary principle to ensure the success of multi-view learning. Since accessing multiple views is the fundament of multi-view learning, with the exception of study on learning a model from multiple views, it is also valuable to study how to construct multiple views and how to evaluate these views. Overall, by exploring the consistency and complementary properties of different views, multi-view learning is rendered more effective, more promising, and has better generalization ability than single-view learning.

Click to Read Paper and Get Code
The image, question (combined with the history for de-referencing), and the corresponding answer are three vital components of visual dialog. Classical visual dialog systems integrate the image, question, and history to search for or generate the best matched answer, and so, this approach significantly ignores the role of the answer. In this paper, we devise a novel image-question-answer synergistic network to value the role of the answer for precise visual dialog. We extend the traditional one-stage solution to a two-stage solution. In the first stage, candidate answers are coarsely scored according to their relevance to the image and question pair. Afterward, in the second stage, answers with high probability of being correct are re-ranked by synergizing with image and question. On the Visual Dialog v1.0 dataset, the proposed synergistic network boosts the discriminative visual dialog model to achieve a new state-of-the-art of 57.88\% normalized discounted cumulative gain. A generative visual dialog model equipped with the proposed technique also shows promising improvements.

* Accepted by cvpr2019
Click to Read Paper and Get Code
The purpose of this paper is to improve the traditional K-means algorithm. In the traditional K mean clustering algorithm, the initial clustering centers are generated randomly in the data set. It is easy to fall into the local minimum solution when the initial cluster centers are randomly generated. The initial clustering center selected by K-means clustering algorithm which based on density is more representative. The experimental results show that the improved K clustering algorithm can eliminate the dependence on the initial cluster, and the accuracy of clustering is improved.

Click to Read Paper and Get Code
Deep learning based methods have recently pushed the state-of-the-art on the problem of Single Image Super-Resolution (SISR). In this work, we revisit the more traditional interpolation-based methods, that were popular before, now with the help of deep learning. In particular, we propose to use a Convolutional Neural Network (CNN) to estimate spatially variant interpolation kernels and apply the estimated kernels adaptively to each position in the image. The whole model is trained in an end-to-end manner. We explore two ways to improve the results for the case of large upscaling factors, and propose a recursive extension of our basic model. This achieves results that are on par with state-of-the-art methods. We visualize the estimated adaptive interpolation kernels to gain more insight on the effectiveness of the proposed method. We also extend the method to the task of joint image filtering and again achieve state-of-the-art performance.

Click to Read Paper and Get Code
We propose the cascade attribute learning network (CALNet), which can learn attributes in a control task separately and assemble them together. Our contribution is twofold: first we propose attribute learning in reinforcement learning (RL). Attributes used to be modeled using constraint functions or terms in the objective function, making it hard to transfer. Attribute learning, on the other hand, models these task properties as modules in the policy network. We also propose using novel cascading compensative networks in the CALNet to learn and assemble attributes. Using the CALNet, one can zero shoot an unseen task by separately learning all its attributes, and assembling the attribute modules. We have validated the capacity of our model on a wide variety of control problems with attributes in time, position, velocity and acceleration phases.

Click to Read Paper and Get Code
Synthesizing SQL queries from natural language is a long-standing open problem and has been attracting considerable interest recently. Toward solving the problem, the de facto approach is to employ a sequence-to-sequence-style model. Such an approach will necessarily require the SQL queries to be serialized. Since the same SQL query may have multiple equivalent serializations, training a sequence-to-sequence-style model is sensitive to the choice from one of them. This phenomenon is documented as the "order-matters" problem. Existing state-of-the-art approaches rely on reinforcement learning to reward the decoder when it generates any of the equivalent serializations. However, we observe that the improvement from reinforcement learning is limited. In this paper, we propose a novel approach, i.e., SQLNet, to fundamentally solve this problem by avoiding the sequence-to-sequence structure when the order does not matter. In particular, we employ a sketch-based approach where the sketch contains a dependency graph so that one prediction can be done by taking into consideration only the previous predictions that it depends on. In addition, we propose a sequence-to-set model as well as the column attention mechanism to synthesize the query based on the sketch. By combining all these novel techniques, we show that SQLNet can outperform the prior art by 9% to 13% on the WikiSQL task.

* Submitting to ICLR 2018
Click to Read Paper and Get Code
To detect GAN generated images, conventional supervised machine learning algorithms require collection of a number of real and fake images from the targeted GAN model. However, the specific model used by the attacker is often unavailable. To address this, we propose a GAN simulator, AutoGAN, which can simulate the artifacts produced by the common pipeline shared by several popular GAN models. Additionally, we identify a unique artifact caused by the up-sampling component included in the common GAN pipeline. We show theoretically such artifacts are manifested as replications of spectra in the frequency domain and thus propose a classifier model based on the spectrum input, rather than the pixel input. By using the simulated images to train a spectrum based classifier, even without seeing the fake images produced by the targeted GAN model during training, our approach achieves state-of-the-art performances on detecting fake images generated by popular GAN models such as CycleGAN.

* 7 pages, 7 figures
Click to Read Paper and Get Code
Traditional multiple object tracking methods divide the task into two parts: affinity learning and data association. The separation of the task requires to define a hand-crafted training goal in affinity learning stage and a hand-crafted cost function of data association stage, which prevents the tracking goals from learning directly from the feature. In this paper, we present a new multiple object tracking (MOT) framework with data-driven association method, named as Tracklet Association Tracker (TAT). The framework aims at gluing feature learning and data association into a unity by a bi-level optimization formulation so that the association results can be directly learned from features. To boost the performance, we also adopt the popular hierarchical association and perform the necessary alignment and selection of raw detection responses. Our model trains over 20X faster than a similar approach, and achieves the state-of-the-art performance on both MOT2016 and MOT2017 benchmarks.

Click to Read Paper and Get Code
In this paper, we propose a principled Perceptual Adversarial Networks (PAN) for image-to-image transformation tasks. Unlike existing application-specific algorithms, PAN provides a generic framework of learning mapping relationship between paired images (Fig. 1), such as mapping a rainy image to its de-rained counterpart, object edges to its photo, semantic labels to a scenes image, etc. The proposed PAN consists of two feed-forward convolutional neural networks (CNNs), the image transformation network T and the discriminative network D. Through combining the generative adversarial loss and the proposed perceptual adversarial loss, these two networks can be trained alternately to solve image-to-image transformation tasks. Among them, the hidden layers and output of the discriminative network D are upgraded to continually and automatically discover the discrepancy between the transformed image and the corresponding ground-truth. Simultaneously, the image transformation network T is trained to minimize the discrepancy explored by the discriminative network D. Through the adversarial training process, the image transformation network T will continually narrow the gap between transformed images and ground-truth images. Experiments evaluated on several image-to-image transformation tasks (e.g., image de-raining, image inpainting, etc.) show that the proposed PAN outperforms many related state-of-the-art methods.

* 20 pages, 9 figures
Click to Read Paper and Get Code
We analyze the local Rademacher complexity of empirical risk minimization (ERM)-based multi-label learning algorithms, and in doing so propose a new algorithm for multi-label learning. Rather than using the trace norm to regularize the multi-label predictor, we instead minimize the tail sum of the singular values of the predictor in multi-label learning. Benefiting from the use of the local Rademacher complexity, our algorithm, therefore, has a sharper generalization error bound and a faster convergence rate. Compared to methods that minimize over all singular values, concentrating on the tail singular values results in better recovery of the low-rank structure of the multi-label predictor, which plays an import role in exploiting label correlations. We propose a new conditional singular value thresholding algorithm to solve the resulting objective function. Empirical studies on real-world datasets validate our theoretical results and demonstrate the effectiveness of the proposed algorithm.

Click to Read Paper and Get Code
Compressing giant neural networks has gained much attention for their extensive applications on edge devices such as cellphones. During the compressing process, one of the most important procedures is to retrain the pre-trained models using the original training dataset. However, due to the consideration of security, privacy or commercial profits, in practice, only a fraction of sample training data are made available, which makes the retraining infeasible. To solve this issue, this paper proposes to resort to unlabeled data in hand that can be cheaper to acquire. Specifically, we exploit the unlabeled data to mimic the classification characteristics of giant networks, so that the original capacity can be preserved nicely. Nevertheless, there exists a dataset bias between the labeled and unlabeled data, disturbing the mimicking to some extent. We thus fix this bias by an adversarial loss to make an alignment on the distributions of their low-level feature representations. We further provide theoretical discussions about how the unlabeled data help compressed networks to generalize better. Experimental results demonstrate that the unlabeled data can significantly improve the performance of the compressed networks.

Click to Read Paper and Get Code
We identify agreement and disagreement between utterances that express stances towards a topic of discussion. Existing methods focus mainly on conversational settings, where dialogic features are used for (dis)agreement inference. We extend this scope and seek to detect stance (dis)agreement in a broader setting, where independent stance-bearing utterances, which prevail in many stance corpora and real-world scenarios, are compared. To cope with such non-dialogic utterances, we find that the reasons uttered to back up a specific stance can help predict stance (dis)agreements. We propose a reason comparing network (RCN) to leverage reason information for stance comparison. Empirical results on a well-known stance corpus show that our method can discover useful reason information, enabling it to outperform several baselines in stance (dis)agreement detection.

* To appear at the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)
Click to Read Paper and Get Code