In this paper, we propose a principled Perceptual Adversarial Networks (PAN) for image-to-image transformation tasks. Unlike existing application-specific algorithms, PAN provides a generic framework of learning mapping relationship between paired images (Fig. 1), such as mapping a rainy image to its de-rained counterpart, object edges to its photo, semantic labels to a scenes image, etc. The proposed PAN consists of two feed-forward convolutional neural networks (CNNs), the image transformation network T and the discriminative network D. Through combining the generative adversarial loss and the proposed perceptual adversarial loss, these two networks can be trained alternately to solve image-to-image transformation tasks. Among them, the hidden layers and output of the discriminative network D are upgraded to continually and automatically discover the discrepancy between the transformed image and the corresponding ground-truth. Simultaneously, the image transformation network T is trained to minimize the discrepancy explored by the discriminative network D. Through the adversarial training process, the image transformation network T will continually narrow the gap between transformed images and ground-truth images. Experiments evaluated on several image-to-image transformation tasks (e.g., image de-raining, image inpainting, etc.) show that the proposed PAN outperforms many related state-of-the-art methods.

* 20 pages, 9 figures
Click to Read Paper
Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performance. Unlike existing GANs, which employ a pre-defined adversarial objective function alternately training a generator and a discriminator, we utilize different adversarial training objectives as mutation operations and evolve a population of generators to adapt to the environment (i.e., the discriminator). We also utilize an evaluation mechanism to measure the quality and diversity of generated samples, such that only well-performing generator(s) are preserved and used for further training. In this way, E-GAN overcomes the limitations of an individual adversarial training objective and always preserves the best offspring, contributing to progress in and the success of GANs. Experiments on several datasets demonstrate that E-GAN achieves convincing generative performance and reduces the training problems inherent in existing GANs.

* 14 pages, 8 figures
Click to Read Paper