Models, code, and papers for "Charles E. Hughes":

Facial Expression Representation Learning by Synthesizing Expression Images

Nov 30, 2019
Kamran Ali, Charles E. Hughes

Representations used for Facial Expression Recognition (FER) usually contain expression information along with identity features. In this paper, we propose a novel Disentangled Expression learning-Generative Adversarial Network (DE-GAN) which combines the concept of disentangled representation learning with residue learning to explicitly disentangle facial expression representation from identity information. In this method the facial expression representation is learned by reconstructing an expression image employing an encoder-decoder based generator. Unlike previous works using only expression residual learning for facial expression recognition, our method learns the disentangled expression representation along with the expressive component recorded by the encoder of DE-GAN. In order to improve the quality of synthesized expression images and the effectiveness of the learned disentangled expression representation, expression and identity classification is performed by the discriminator of DE-GAN. Experiments performed on widely used datasets (CK+, MMI, Oulu-CASIA) show that the proposed technique produces comparable or better results than state-of-the-art methods.

* 7 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1909.13135 

  Click for Model/Code and Paper
All-In-One: Facial Expression Transfer, Editing and Recognition Using A Single Network

Nov 16, 2019
Kamran Ali, Charles E. Hughes

In this paper, we present a unified architecture known as Transfer-Editing and Recognition Generative Adversarial Network (TER-GAN) which can be used: 1. to transfer facial expressions from one identity to another identity, known as Facial Expression Transfer (FET), 2. to transform the expression of a given image to a target expression, while preserving the identity of the image, known as Facial Expression Editing (FEE), and 3. to recognize the facial expression of a face image, known as Facial Expression Recognition (FER). In TER-GAN, we combine the capabilities of generative models to generate synthetic images, while learning important information about the input images during the reconstruction process. More specifically, two encoders are used in TER-GAN to encode identity and expression information from two input images, and a synthetic expression image is generated by the decoder part of TER-GAN. To improve the feature disentanglement and extraction process, we also introduce a novel expression consistency loss and an identity consistency loss which exploit extra expression and identity information from generated images. Experimental results show that the proposed method can be used for efficient facial expression transfer, facial expression editing and facial expression recognition. In order to evaluate the proposed technique and to compare our results with state-of-the-art methods, we have used the Oulu-CASIA dataset for our experiments.

* 10 pages, 5 figures 

  Click for Model/Code and Paper
Facial Expression Recognition Using Disentangled Adversarial Learning

Sep 28, 2019
Kamran Ali, Charles E. Hughes

The representation used for Facial Expression Recognition (FER) usually contain expression information along with other variations such as identity and illumination. In this paper, we propose a novel Disentangled Expression learning-Generative Adversarial Network (DE-GAN) to explicitly disentangle facial expression representation from identity information. In this learning by reconstruction method, facial expression representation is learned by reconstructing an expression image employing an encoder-decoder based generator. This expression representation is disentangled from identity component by explicitly providing the identity code to the decoder part of DE-GAN. The process of expression image reconstruction and disentangled expression representation learning is improved by performing expression and identity classification in the discriminator of DE-GAN. The disentangled facial expression representation is then used for facial expression recognition employing simple classifiers like SVM or MLP. The experiments are performed on publicly available and widely used face expression databases (CK+, MMI, Oulu-CASIA). The experimental results show that the proposed technique produces comparable results with state-of-the-art methods.


  Click for Model/Code and Paper
Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions

Aug 17, 2017
Behnaz Nojavanasghari, Charles. E. Hughes, Tadas Baltrusaitis, Louis-philippe Morency

A person's face discloses important information about their affective state. Although there has been extensive research on recognition of facial expressions, the performance of existing approaches is challenged by facial occlusions. Facial occlusions are often treated as noise and discarded in recognition of affective states. However, hand over face occlusions can provide additional information for recognition of some affective states such as curiosity, frustration and boredom. One of the reasons that this problem has not gained attention is the lack of naturalistic occluded faces that contain hand over face occlusions as well as other types of occlusions. Traditional approaches for obtaining affective data are time demanding and expensive, which limits researchers in affective computing to work on small datasets. This limitation affects the generalizability of models and deprives researchers from taking advantage of recent advances in deep learning that have shown great success in many fields but require large volumes of data. In this paper, we first introduce a novel framework for synthesizing naturalistic facial occlusions from an initial dataset of non-occluded faces and separate images of hands, reducing the costly process of data collection and annotation. We then propose a model for facial occlusion type recognition to differentiate between hand over face occlusions and other types of occlusions such as scarves, hair, glasses and objects. Finally, we present a model to localize hand over face occlusions and identify the occluded regions of the face.

* Accepted to International Conference on Affective Computing and Intelligent Interaction (ACII), 2017 

  Click for Model/Code and Paper