Models, code, and papers for "Chen Change Loy":

Learning to Disambiguate by Asking Discriminative Questions

Aug 09, 2017
Yining Li, Chen Huang, Xiaoou Tang, Chen-Change Loy

The ability to ask questions is a powerful tool to gather information in order to learn about the world and resolve ambiguities. In this paper, we explore a novel problem of generating discriminative questions to help disambiguate visual instances. Our work can be seen as a complement and new extension to the rich research studies on image captioning and question answering. We introduce the first large-scale dataset with over 10,000 carefully annotated images-question tuples to facilitate benchmarking. In particular, each tuple consists of a pair of images and 4.6 discriminative questions (as positive samples) and 5.9 non-discriminative questions (as negative samples) on average. In addition, we present an effective method for visual discriminative question generation. The method can be trained in a weakly supervised manner without discriminative images-question tuples but just existing visual question answering datasets. Promising results are shown against representative baselines through quantitative evaluations and user studies.

* 14 pages, 12 figures, ICCV2017 

  Click for Model/Code and Paper
DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection

Sep 11, 2014
Wanli Ouyang, Ping Luo, Xingyu Zeng, Shi Qiu, Yonglong Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Yuanjun Xiong, Chen Qian, Zhenyao Zhu, Ruohui Wang, Chen-Change Loy, Xiaogang Wang, Xiaoou Tang

In this paper, we propose multi-stage and deformable deep convolutional neural networks for object detection. This new deep learning object detection diagram has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. With the proposed multi-stage training strategy, multiple classifiers are jointly optimized to process samples at different difficulty levels. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of modeling averaging. The proposed approach ranked \#2 in ILSVRC 2014. It improves the mean averaged precision obtained by RCNN, which is the state-of-the-art of object detection, from $31\%$ to $45\%$. Detailed component-wise analysis is also provided through extensive experimental evaluation.

  Click for Model/Code and Paper
Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation

Mar 14, 2018
Xiaoxiao Li, Chen Change Loy

The problem of video object segmentation can become extremely challenging when multiple instances co-exist. While each instance may exhibit large scale and pose variations, the problem is compounded when instances occlude each other causing failures in tracking. In this study, we formulate a deep recurrent network that is capable of segmenting and tracking objects in video simultaneously by their temporal continuity, yet able to re-identify them when they re-appear after a prolonged occlusion. We combine both temporal propagation and re-identification functionalities into a single framework that can be trained end-to-end. In particular, we present a re-identification module with template expansion to retrieve missing objects despite their large appearance changes. In addition, we contribute a new attention-based recurrent mask propagation approach that is robust to distractors not belonging to the target segment. Our approach achieves a new state-of-the-art global mean (Region Jaccard and Boundary F measure) of 68.2 on the challenging DAVIS 2017 benchmark (test-dev set), outperforming the winning solution which achieves a global mean of 66.1 on the same partition.

  Click for Model/Code and Paper
Learning to Steer by Mimicking Features from Heterogeneous Auxiliary Networks

Nov 07, 2018
Yuenan Hou, Zheng Ma, Chunxiao Liu, Chen Change Loy

The training of many existing end-to-end steering angle prediction models heavily relies on steering angles as the supervisory signal. Without learning from much richer contexts, these methods are susceptible to the presence of sharp road curves, challenging traffic conditions, strong shadows, and severe lighting changes. In this paper, we considerably improve the accuracy and robustness of predictions through heterogeneous auxiliary networks feature mimicking, a new and effective training method that provides us with much richer contextual signals apart from steering direction. Specifically, we train our steering angle predictive model by distilling multi-layer knowledge from multiple heterogeneous auxiliary networks that perform related but different tasks, e.g., image segmentation or optical flow estimation. As opposed to multi-task learning, our method does not require expensive annotations of related tasks on the target set. This is made possible by applying contemporary off-the-shelf networks on the target set and mimicking their features in different layers after transformation. The auxiliary networks are discarded after training without affecting the runtime efficiency of our model. Our approach achieves a new state-of-the-art on Udacity and, outperforming the previous best by a large margin of 12.8% and 52.1%, respectively. Encouraging results are also shown on Berkeley Deep Drive (BDD) dataset.

* 8 pages, 6 figures; Accepted by AAAI 2019; Our project page is available at 

  Click for Model/Code and Paper
WIDER Face and Pedestrian Challenge 2018: Methods and Results

Feb 19, 2019
Chen Change Loy, Dahua Lin, Wanli Ouyang, Yuanjun Xiong, Shuo Yang, Qingqiu Huang, Dongzhan Zhou, Wei Xia, Quanquan Li, Ping Luo, Junjie Yan, Jianfeng Wang, Zuoxin Li, Ye Yuan, Boxun Li, Shuai Shao, Gang Yu, Fangyun Wei, Xiang Ming, Dong Chen, Shifeng Zhang, Cheng Chi, Zhen Lei, Stan Z. Li, Hongkai Zhang, Bingpeng Ma, Hong Chang, Shiguang Shan, Xilin Chen, Wu Liu, Boyan Zhou, Huaxiong Li, Peng Cheng, Tao Mei, Artem Kukharenko, Artem Vasenin, Nikolay Sergievskiy, Hua Yang, Liangqi Li, Qiling Xu, Yuan Hong, Lin Chen, Mingjun Sun, Yirong Mao, Shiying Luo, Yongjun Li, Ruiping Wang, Qiaokang Xie, Ziyang Wu, Lei Lu, Yiheng Liu, Wengang Zhou

This paper presents a review of the 2018 WIDER Challenge on Face and Pedestrian. The challenge focuses on the problem of precise localization of human faces and bodies, and accurate association of identities. It comprises of three tracks: (i) WIDER Face which aims at soliciting new approaches to advance the state-of-the-art in face detection, (ii) WIDER Pedestrian which aims to find effective and efficient approaches to address the problem of pedestrian detection in unconstrained environments, and (iii) WIDER Person Search which presents an exciting challenge of searching persons across 192 movies. In total, 73 teams made valid submissions to the challenge tracks. We summarize the winning solutions for all three tracks. and present discussions on open problems and potential research directions in these topics.

* Report of ECCV 2018 workshop: WIDER Face and Pedestrian Challenge 

  Click for Model/Code and Paper
Dense Intrinsic Appearance Flow for Human Pose Transfer

Mar 27, 2019
Yining Li, Chen Huang, Chen Change Loy

We present a novel approach for the task of human pose transfer, which aims at synthesizing a new image of a person from an input image of that person and a target pose. We address the issues of limited correspondences identified between keypoints only and invisible pixels due to self-occlusion. Unlike existing methods, we propose to estimate dense and intrinsic 3D appearance flow to better guide the transfer of pixels between poses. In particular, we wish to generate the 3D flow from just the reference and target poses. Training a network for this purpose is non-trivial, especially when the annotations for 3D appearance flow are scarce by nature. We address this problem through a flow synthesis stage. This is achieved by fitting a 3D model to the given pose pair and project them back to the 2D plane to compute the dense appearance flow for training. The synthesized ground-truths are then used to train a feedforward network for efficient mapping from the input and target skeleton poses to the 3D appearance flow. With the appearance flow, we perform feature warping on the input image and generate a photorealistic image of the target pose. Extensive results on DeepFashion and Market-1501 datasets demonstrate the effectiveness of our approach over existing methods. Our code is available at

* CVPR 2019 

  Click for Model/Code and Paper
Local Similarity-Aware Deep Feature Embedding

Oct 27, 2016
Chen Huang, Chen Change Loy, Xiaoou Tang

Existing deep embedding methods in vision tasks are capable of learning a compact Euclidean space from images, where Euclidean distances correspond to a similarity metric. To make learning more effective and efficient, hard sample mining is usually employed, with samples identified through computing the Euclidean feature distance. However, the global Euclidean distance cannot faithfully characterize the true feature similarity in a complex visual feature space, where the intraclass distance in a high-density region may be larger than the interclass distance in low-density regions. In this paper, we introduce a Position-Dependent Deep Metric (PDDM) unit, which is capable of learning a similarity metric adaptive to local feature structure. The metric can be used to select genuinely hard samples in a local neighborhood to guide the deep embedding learning in an online and robust manner. The new layer is appealing in that it is pluggable to any convolutional networks and is trained end-to-end. Our local similarity-aware feature embedding not only demonstrates faster convergence and boosted performance on two complex image retrieval datasets, its large margin nature also leads to superior generalization results under the large and open set scenarios of transfer learning and zero-shot learning on ImageNet 2010 and ImageNet-10K datasets.

* 9 pages, 4 figures, 2 tables. Accepted to NIPS 2016 

  Click for Model/Code and Paper
Discriminative Sparse Neighbor Approximation for Imbalanced Learning

Feb 03, 2016
Chen Huang, Chen Change Loy, Xiaoou Tang

Data imbalance is common in many vision tasks where one or more classes are rare. Without addressing this issue conventional methods tend to be biased toward the majority class with poor predictive accuracy for the minority class. These methods further deteriorate on small, imbalanced data that has a large degree of class overlap. In this study, we propose a novel discriminative sparse neighbor approximation (DSNA) method to ameliorate the effect of class-imbalance during prediction. Specifically, given a test sample, we first traverse it through a cost-sensitive decision forest to collect a good subset of training examples in its local neighborhood. Then we generate from this subset several class-discriminating but overlapping clusters and model each as an affine subspace. From these subspaces, the proposed DSNA iteratively seeks an optimal approximation of the test sample and outputs an unbiased prediction. We show that our method not only effectively mitigates the imbalance issue, but also allows the prediction to extrapolate to unseen data. The latter capability is crucial for achieving accurate prediction on small dataset with limited samples. The proposed imbalanced learning method can be applied to both classification and regression tasks at a wide range of imbalance levels. It significantly outperforms the state-of-the-art methods that do not possess an imbalance handling mechanism, and is found to perform comparably or even better than recent deep learning methods by using hand-crafted features only.

* 11 pages, 10 figures, In submission 

  Click for Model/Code and Paper
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Jun 02, 2015
Wanli Ouyang, Xiaogang Wang, Xingyu Zeng, Shi Qiu, Ping Luo, Yonglong Tian, Hongsheng Li, Shuo Yang, Zhe Wang, Chen-Change Loy, Xiaoou Tang

In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN \cite{girshick2014rich}, which was the state-of-the-art, from 31\% to 50.3\% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1\%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provide a global view for people to understand the deep learning object detection pipeline.

* CVPR15, arXiv admin note: substantial text overlap with arXiv:1409.3505 

  Click for Model/Code and Paper
Instance-level Facial Attributes Transfer with Geometry-Aware Flow

Nov 30, 2018
Weidong Yin, Ziwei Liu, Chen Change Loy

We address the problem of instance-level facial attribute transfer without paired training data, e.g. faithfully transferring the exact mustache from a source face to a target face. This is a more challenging task than the conventional semantic-level attribute transfer, which only preserves the generic attribute style instead of instance-level traits. We propose the use of geometry-aware flow, which serves as a well-suited representation for modeling the transformation between instance-level facial attributes. Specifically, we leverage the facial landmarks as the geometric guidance to learn the differentiable flows automatically, despite of the large pose gap existed. Geometry-aware flow is able to warp the source face attribute into the target face context and generate a warp-and-blend result. To compensate for the potential appearance gap between source and target faces, we propose a hallucination sub-network that produces an appearance residual to further refine the warp-and-blend result. Finally, a cycle-consistency framework consisting of both attribute transfer module and attribute removal module is designed, so that abundant unpaired face images can be used as training data. Extensive evaluations validate the capability of our approach in transferring instance-level facial attributes faithfully across large pose and appearance gaps. Thanks to the flow representation, our approach can readily be applied to generate realistic details on high-resolution images.

* To appear in AAAI 2019. Code and models are available at: 

  Click for Model/Code and Paper
Aesthetic-Driven Image Enhancement by Adversarial Learning

Jul 02, 2018
Yubin Deng, Chen Change Loy, Xiaoou Tang

We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement.

  Click for Model/Code and Paper
Image Aesthetic Assessment: An Experimental Survey

Apr 20, 2017
Yubin Deng, Chen Change Loy, Xiaoou Tang

This survey aims at reviewing recent computer vision techniques used in the assessment of image aesthetic quality. Image aesthetic assessment aims at computationally distinguishing high-quality photos from low-quality ones based on photographic rules, typically in the form of binary classification or quality scoring. A variety of approaches has been proposed in the literature trying to solve this challenging problem. In this survey, we present a systematic listing of the reviewed approaches based on visual feature types (hand-crafted features and deep features) and evaluation criteria (dataset characteristics and evaluation metrics). Main contributions and novelties of the reviewed approaches are highlighted and discussed. In addition, following the emergence of deep learning techniques, we systematically evaluate recent deep learning settings that are useful for developing a robust deep model for aesthetic scoring. Experiments are conducted using simple yet solid baselines that are competitive with the current state-of-the-arts. Moreover, we discuss the possibility of manipulating the aesthetics of images through computational approaches. We hope that our survey could serve as a comprehensive reference source for future research on the study of image aesthetic assessment.

  Click for Model/Code and Paper
Accelerating the Super-Resolution Convolutional Neural Network

Aug 01, 2016
Chao Dong, Chen Change Loy, Xiaoou Tang

As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accelerating the current SRCNN, and propose a compact hourglass-shape CNN structure for faster and better SR. We re-design the SRCNN structure mainly in three aspects. First, we introduce a deconvolution layer at the end of the network, then the mapping is learned directly from the original low-resolution image (without interpolation) to the high-resolution one. Second, we reformulate the mapping layer by shrinking the input feature dimension before mapping and expanding back afterwards. Third, we adopt smaller filter sizes but more mapping layers. The proposed model achieves a speed up of more than 40 times with even superior restoration quality. Further, we present the parameter settings that can achieve real-time performance on a generic CPU while still maintaining good performance. A corresponding transfer strategy is also proposed for fast training and testing across different upscaling factors.

* 17 pages, 8 figures, ECCV 2016 

  Click for Model/Code and Paper
Learning from Multiple Sources for Video Summarisation

Feb 06, 2015
Xiatian Zhu, Chen Change Loy, Shaogang Gong

Many visual surveillance tasks, summarisation, is conventionally accomplished through analysing imagerybased features. Relying solely on visual cues for public surveillance video understanding is unreliable, since visual observations obtained from public space CCTV video data are often not sufficiently trustworthy and events of interest can be subtle. On the other hand, non-visual data sources such as weather reports and traffic sensory signals are readily accessible but are not explored jointly to complement visual data for video content analysis and summarisation. In this paper, we present a novel unsupervised framework to learn jointly from both visual and independently-drawn non-visual data sources for discovering meaningful latent structure of surveillance video data. In particular, we investigate ways to cope with discrepant dimension and representation whist associating these heterogeneous data sources, and derive effective mechanism to tolerate with missing and incomplete data from different sources. We show that the proposed multi-source learning framework not only achieves better video content clustering than state-of-the-art methods, but also is capable of accurately inferring missing non-visual semantics from previously unseen videos. In addition, a comprehensive user study is conducted to validate the quality of video summarisation generated using the proposed multi-source model.

  Click for Model/Code and Paper
Prime Sample Attention in Object Detection

Apr 09, 2019
Yuhang Cao, Kai Chen, Chen Change Loy, Dahua Lin

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

  Click for Model/Code and Paper
A Lightweight Optical Flow CNN - Revisiting Data Fidelity and Regularization

Mar 15, 2019
Tak-Wai Hui, Xiaoou Tang, Chen Change Loy

Over four decades, the majority addresses the problem of optical flow estimation using variational methods. With the advance of machine learning, some recent works have attempted to address the problem using convolutional neural network (CNN) and have showed promising results. FlowNet2, the state-of-the-art CNN, requires over 160M parameters to achieve accurate flow estimation. Our LiteFlowNet2 outperforms FlowNet2 on Sintel and KITTI benchmarks, while being 25.3 times smaller in the footprint and 3.1 times faster in the running speed. LiteFlowNet2 which is built on the foundation laid by conventional methods has marked a milestone to achieve the corresponding roles as data fidelity and regularization in variational methods. We present an effective flow inference approach at each pyramid level through a novel lightweight cascaded network. It provides high flow estimation accuracy through early correction with seamless incorporation of descriptor matching. A novel flow regularization layer is used to ameliorate the issue of outliers and vague flow boundaries through a novel feature-driven local convolution. Our network also owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Comparing to our earlier work, LiteFlowNet2 improves the optical flow accuracy on Sintel clean pass by 24%, Sintel final pass by 8.9%, KITTI 2012 by 16.8%, and KITTI 2015 by 17.5%. Our network protocol and trained models will be made publicly available on .

* arXiv admin note: substantial text overlap with arXiv:1805.07036 

  Click for Model/Code and Paper
Deep Imbalanced Learning for Face Recognition and Attribute Prediction

Jun 01, 2018
Chen Huang, Yining Li, Chen Change Loy, Xiaoou Tang

Data for face analysis often exhibit highly-skewed class distribution, i.e., most data belong to a few majority classes, while the minority classes only contain a scarce amount of instances. To mitigate this issue, contemporary deep learning methods typically follow classic strategies such as class re-sampling or cost-sensitive training. In this paper, we conduct extensive and systematic experiments to validate the effectiveness of these classic schemes for representation learning on class-imbalanced data. We further demonstrate that more discriminative deep representation can be learned by enforcing a deep network to maintain inter-cluster margins both within and between classes. This tight constraint effectively reduces the class imbalance inherent in the local data neighborhood, thus carving much more balanced class boundaries locally. We show that it is easy to deploy angular margins between the cluster distributions on a hypersphere manifold. Such learned Cluster-based Large Margin Local Embedding (CLMLE), when combined with a simple k-nearest cluster algorithm, shows significant improvements in accuracy over existing methods on both face recognition and face attribute prediction tasks that exhibit imbalanced class distribution.

* 14 pages, 10 figures, 7 tables, In submission 

  Click for Model/Code and Paper
LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation

May 18, 2018
Tak-Wai Hui, Xiaoou Tang, Chen Change Loy

FlowNet2, the state-of-the-art convolutional neural network (CNN) for optical flow estimation, requires over 160M parameters to achieve accurate flow estimation. In this paper we present an alternative network that outperforms FlowNet2 on the challenging Sintel final pass and KITTI benchmarks, while being 30 times smaller in the model size and 1.36 times faster in the running speed. This is made possible by drilling down to architectural details that might have been missed in the current frameworks: (1) We present a more effective flow inference approach at each pyramid level through a lightweight cascaded network. It not only improves flow estimation accuracy through early correction, but also permits seamless incorporation of descriptor matching in our network. (2) We present a novel flow regularization layer to ameliorate the issue of outliers and vague flow boundaries by using a feature-driven local convolution. (3) Our network owns an effective structure for pyramidal feature extraction and embraces feature warping rather than image warping as practiced in FlowNet2. Our code and trained models are available at .

* Accepted to CVPR 2018 (spotlight). Project page: 

  Click for Model/Code and Paper
Discover and Learn New Objects from Documentaries

Jul 30, 2017
Kai Chen, Hang Song, Chen Change Loy, Dahua Lin

Despite the remarkable progress in recent years, detecting objects in a new context remains a challenging task. Detectors learned from a public dataset can only work with a fixed list of categories, while training from scratch usually requires a large amount of training data with detailed annotations. This work aims to explore a novel approach -- learning object detectors from documentary films in a weakly supervised manner. This is inspired by the observation that documentaries often provide dedicated exposition of certain object categories, where visual presentations are aligned with subtitles. We believe that object detectors can be learned from such a rich source of information. Towards this goal, we develop a joint probabilistic framework, where individual pieces of information, including video frames and subtitles, are brought together via both visual and linguistic links. On top of this formulation, we further derive a weakly supervised learning algorithm, where object model learning and training set mining are unified in an optimization procedure. Experimental results on a real world dataset demonstrate that this is an effective approach to learning new object detectors.

* Published on CVPR 2017 (spotlight) 

  Click for Model/Code and Paper
Merge or Not? Learning to Group Faces via Imitation Learning

Jul 13, 2017
Yue He, Kaidi Cao, Cheng Li, Chen Change Loy

Given a large number of unlabeled face images, face grouping aims at clustering the images into individual identities present in the data. This task remains a challenging problem despite the remarkable capability of deep learning approaches in learning face representation. In particular, grouping results can still be egregious given profile faces and a large number of uninteresting faces and noisy detections. Often, a user needs to correct the erroneous grouping manually. In this study, we formulate a novel face grouping framework that learns clustering strategy from ground-truth simulated behavior. This is achieved through imitation learning (a.k.a apprenticeship learning or learning by watching) via inverse reinforcement learning (IRL). In contrast to existing clustering approaches that group instances by similarity, our framework makes sequential decision to dynamically decide when to merge two face instances/groups driven by short- and long-term rewards. Extensive experiments on three benchmark datasets show that our framework outperforms unsupervised and supervised baselines.

  Click for Model/Code and Paper