Models, code, and papers for "Colin Raffel":

Training a Subsampling Mechanism in Expectation

Apr 08, 2017
Colin Raffel, Dieterich Lawson

We describe a mechanism for subsampling sequences and show how to compute its expected output so that it can be trained with standard backpropagation. We test this approach on a simple toy problem and discuss its shortcomings.

* Camera-ready version. Includes additional figures in an appendix 

  Click for Model/Code and Paper
Monotonic Chunkwise Attention

Feb 23, 2018
Chung-Cheng Chiu, Colin Raffel

Sequence-to-sequence models with soft attention have been successfully applied to a wide variety of problems, but their decoding process incurs a quadratic time and space cost and is inapplicable to real-time sequence transduction. To address these issues, we propose Monotonic Chunkwise Attention (MoChA), which adaptively splits the input sequence into small chunks over which soft attention is computed. We show that models utilizing MoChA can be trained efficiently with standard backpropagation while allowing online and linear-time decoding at test time. When applied to online speech recognition, we obtain state-of-the-art results and match the performance of a model using an offline soft attention mechanism. In document summarization experiments where we do not expect monotonic alignments, we show significantly improved performance compared to a baseline monotonic attention-based model.

* ICLR camera-ready version 

  Click for Model/Code and Paper
Feed-Forward Networks with Attention Can Solve Some Long-Term Memory Problems

Sep 20, 2016
Colin Raffel, Daniel P. W. Ellis

We propose a simplified model of attention which is applicable to feed-forward neural networks and demonstrate that the resulting model can solve the synthetic "addition" and "multiplication" long-term memory problems for sequence lengths which are both longer and more widely varying than the best published results for these tasks.


  Click for Model/Code and Paper
Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer

Jul 23, 2018
David Berthelot, Colin Raffel, Aurko Roy, Ian Goodfellow

Autoencoders provide a powerful framework for learning compressed representations by encoding all of the information needed to reconstruct a data point in a latent code. In some cases, autoencoders can "interpolate": By decoding the convex combination of the latent codes for two datapoints, the autoencoder can produce an output which semantically mixes characteristics from the datapoints. In this paper, we propose a regularization procedure which encourages interpolated outputs to appear more realistic by fooling a critic network which has been trained to recover the mixing coefficient from interpolated data. We then develop a simple benchmark task where we can quantitatively measure the extent to which various autoencoders can interpolate and show that our regularizer dramatically improves interpolation in this setting. We also demonstrate empirically that our regularizer produces latent codes which are more effective on downstream tasks, suggesting a possible link between interpolation abilities and learning useful representations.


  Click for Model/Code and Paper
Poker-CNN: A Pattern Learning Strategy for Making Draws and Bets in Poker Games

Sep 22, 2015
Nikolai Yakovenko, Liangliang Cao, Colin Raffel, James Fan

Poker is a family of card games that includes many variations. We hypothesize that most poker games can be solved as a pattern matching problem, and propose creating a strong poker playing system based on a unified poker representation. Our poker player learns through iterative self-play, and improves its understanding of the game by training on the results of its previous actions without sophisticated domain knowledge. We evaluate our system on three poker games: single player video poker, two-player Limit Texas Hold'em, and finally two-player 2-7 triple draw poker. We show that our model can quickly learn patterns in these very different poker games while it improves from zero knowledge to a competitive player against human experts. The contributions of this paper include: (1) a novel representation for poker games, extendable to different poker variations, (2) a CNN based learning model that can effectively learn the patterns in three different games, and (3) a self-trained system that significantly beats the heuristic-based program on which it is trained, and our system is competitive against human expert players.

* 8 pages 

  Click for Model/Code and Paper
Imperceptible, Robust, and Targeted Adversarial Examples for Automatic Speech Recognition

Mar 22, 2019
Yao Qin, Nicholas Carlini, Ian Goodfellow, Garrison Cottrell, Colin Raffel

Adversarial examples are inputs to machine learning models designed by an adversary to cause an incorrect output. So far, adversarial examples have been studied most extensively in the image domain. In this domain, adversarial examples can be constructed by imperceptibly modifying images to cause misclassification, and are practical in the physical world. In contrast, current targeted adversarial examples applied to speech recognition systems have neither of these properties: humans can easily identify the adversarial perturbations, and they are not effective when played over-the-air. This paper makes advances on both of these fronts. First, we develop effectively imperceptible audio adversarial examples (verified through a human study) by leveraging the psychoacoustic principle of auditory masking, while retaining 100% targeted success rate on arbitrary full-sentence targets. Next, we make progress towards physical-world over-the-air audio adversarial examples by constructing perturbations which remain effective even after applying realistic simulated environmental distortions.


  Click for Model/Code and Paper
A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music

Jul 30, 2018
Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, Douglas Eck

The Variational Autoencoder (VAE) has proven to be an effective model for producing semantically meaningful latent representations for natural data. However, it has thus far seen limited application to sequential data, and, as we demonstrate, existing recurrent VAE models have difficulty modeling sequences with long-term structure. To address this issue, we propose the use of a hierarchical decoder, which first outputs embeddings for subsequences of the input and then uses these embeddings to generate each subsequence independently. This structure encourages the model to utilize its latent code, thereby avoiding the "posterior collapse" problem which remains an issue for recurrent VAEs. We apply this architecture to modeling sequences of musical notes and find that it exhibits dramatically better sampling, interpolation, and reconstruction performance than a "flat" baseline model. An implementation of our "MusicVAE" is available online at http://g.co/magenta/musicvae-code.

* ICML 2018 
* ICML Camera Ready Version 

  Click for Model/Code and Paper
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions

Jul 05, 2019
Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, Geoffrey Hinton

Adversarial examples raise questions about whether neural network models are sensitive to the same visual features as humans. Most of the proposed methods for mitigating adversarial examples have subsequently been defeated by stronger attacks. Motivated by these issues, we take a different approach and propose to instead detect adversarial examples based on class-conditional reconstructions of the input. Our method uses the reconstruction network proposed as part of Capsule Networks (CapsNets), but is general enough to be applied to standard convolutional networks. We find that adversarial or otherwise corrupted images result in much larger reconstruction errors than normal inputs, prompting a simple detection method by thresholding the reconstruction error. Based on these findings, we propose the Reconstructive Attack which seeks both to cause a misclassification and a low reconstruction error. While this attack produces undetected adversarial examples, we find that for CapsNets the resulting perturbations can cause the images to appear visually more like the target class. This suggests that CapsNets utilize features that are more aligned with human perception and address the central issue raised by adversarial examples.


  Click for Model/Code and Paper
MixMatch: A Holistic Approach to Semi-Supervised Learning

May 06, 2019
David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, Colin Raffel

Semi-supervised learning has proven to be a powerful paradigm for leveraging unlabeled data to mitigate the reliance on large labeled datasets. In this work, we unify the current dominant approaches for semi-supervised learning to produce a new algorithm, MixMatch, that works by guessing low-entropy labels for data-augmented unlabeled examples and mixing labeled and unlabeled data using MixUp. We show that MixMatch obtains state-of-the-art results by a large margin across many datasets and labeled data amounts. For example, on CIFAR-10 with 250 labels, we reduce error rate by a factor of 4 (from 38% to 11%) and by a factor of 2 on STL-10. We also demonstrate how MixMatch can help achieve a dramatically better accuracy-privacy trade-off for differential privacy. Finally, we perform an ablation study to tease apart which components of MixMatch are most important for its success.


  Click for Model/Code and Paper
Realistic Evaluation of Deep Semi-Supervised Learning Algorithms

Oct 26, 2018
Avital Oliver, Augustus Odena, Colin Raffel, Ekin D. Cubuk, Ian J. Goodfellow

Semi-supervised learning (SSL) provides a powerful framework for leveraging unlabeled data when labels are limited or expensive to obtain. SSL algorithms based on deep neural networks have recently proven successful on standard benchmark tasks. However, we argue that these benchmarks fail to address many issues that these algorithms would face in real-world applications. After creating a unified reimplementation of various widely-used SSL techniques, we test them in a suite of experiments designed to address these issues. We find that the performance of simple baselines which do not use unlabeled data is often underreported, that SSL methods differ in sensitivity to the amount of labeled and unlabeled data, and that performance can degrade substantially when the unlabeled dataset contains out-of-class examples. To help guide SSL research towards real-world applicability, we make our unified reimplemention and evaluation platform publicly available.

* NIPS 2018 Proceedings 

  Click for Model/Code and Paper
Learning a Latent Space of Multitrack Measures

Jun 01, 2018
Ian Simon, Adam Roberts, Colin Raffel, Jesse Engel, Curtis Hawthorne, Douglas Eck

Discovering and exploring the underlying structure of multi-instrumental music using learning-based approaches remains an open problem. We extend the recent MusicVAE model to represent multitrack polyphonic measures as vectors in a latent space. Our approach enables several useful operations such as generating plausible measures from scratch, interpolating between measures in a musically meaningful way, and manipulating specific musical attributes. We also introduce chord conditioning, which allows all of these operations to be performed while keeping harmony fixed, and allows chords to be changed while maintaining musical "style". By generating a sequence of measures over a predefined chord progression, our model can produce music with convincing long-term structure. We demonstrate that our latent space model makes it possible to intuitively control and generate musical sequences with rich instrumentation (see https://goo.gl/s2N7dV for generated audio).


  Click for Model/Code and Paper
Online and Linear-Time Attention by Enforcing Monotonic Alignments

Jun 29, 2017
Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck

Recurrent neural network models with an attention mechanism have proven to be extremely effective on a wide variety of sequence-to-sequence problems. However, the fact that soft attention mechanisms perform a pass over the entire input sequence when producing each element in the output sequence precludes their use in online settings and results in a quadratic time complexity. Based on the insight that the alignment between input and output sequence elements is monotonic in many problems of interest, we propose an end-to-end differentiable method for learning monotonic alignments which, at test time, enables computing attention online and in linear time. We validate our approach on sentence summarization, machine translation, and online speech recognition problems and achieve results competitive with existing sequence-to-sequence models.

* ICML camera-ready version; 10 pages + 9 page appendix 

  Click for Model/Code and Paper
Learning Hard Alignments with Variational Inference

Nov 01, 2017
Dieterich Lawson, Chung-Cheng Chiu, George Tucker, Colin Raffel, Kevin Swersky, Navdeep Jaitly

There has recently been significant interest in hard attention models for tasks such as object recognition, visual captioning and speech recognition. Hard attention can offer benefits over soft attention such as decreased computational cost, but training hard attention models can be difficult because of the discrete latent variables they introduce. Previous work used REINFORCE and Q-learning to approach these issues, but those methods can provide high-variance gradient estimates and be slow to train. In this paper, we tackle the problem of learning hard attention for a sequential task using variational inference methods, specifically the recently introduced VIMCO and NVIL. Furthermore, we propose a novel baseline that adapts VIMCO to this setting. We demonstrate our method on a phoneme recognition task in clean and noisy environments and show that our method outperforms REINFORCE, with the difference being greater for a more complicated task.


  Click for Model/Code and Paper
Is Generator Conditioning Causally Related to GAN Performance?

Jun 19, 2018
Augustus Odena, Jacob Buckman, Catherine Olsson, Tom B. Brown, Christopher Olah, Colin Raffel, Ian Goodfellow

Recent work (Pennington et al, 2017) suggests that controlling the entire distribution of Jacobian singular values is an important design consideration in deep learning. Motivated by this, we study the distribution of singular values of the Jacobian of the generator in Generative Adversarial Networks (GANs). We find that this Jacobian generally becomes ill-conditioned at the beginning of training. Moreover, we find that the average (with z from p(z)) conditioning of the generator is highly predictive of two other ad-hoc metrics for measuring the 'quality' of trained GANs: the Inception Score and the Frechet Inception Distance (FID). We test the hypothesis that this relationship is causal by proposing a 'regularization' technique (called Jacobian Clamping) that softly penalizes the condition number of the generator Jacobian. Jacobian Clamping improves the mean Inception Score and the mean FID for GANs trained on several datasets. It also greatly reduces inter-run variance of the aforementioned scores, addressing (at least partially) one of the main criticisms of GANs.


  Click for Model/Code and Paper
Monotonic Infinite Lookback Attention for Simultaneous Machine Translation

Jun 12, 2019
Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, Colin Raffel

Simultaneous machine translation begins to translate each source sentence before the source speaker is finished speaking, with applications to live and streaming scenarios. Simultaneous systems must carefully schedule their reading of the source sentence to balance quality against latency. We present the first simultaneous translation system to learn an adaptive schedule jointly with a neural machine translation (NMT) model that attends over all source tokens read thus far. We do so by introducing Monotonic Infinite Lookback (MILk) attention, which maintains both a hard, monotonic attention head to schedule the reading of the source sentence, and a soft attention head that extends from the monotonic head back to the beginning of the source. We show that MILk's adaptive schedule allows it to arrive at latency-quality trade-offs that are favorable to those of a recently proposed wait-k strategy for many latency values.

* Accepted for publication at ACL 2019 

  Click for Model/Code and Paper
Onsets and Frames: Dual-Objective Piano Transcription

Jun 05, 2018
Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev Oore, Douglas Eck

We advance the state of the art in polyphonic piano music transcription by using a deep convolutional and recurrent neural network which is trained to jointly predict onsets and frames. Our model predicts pitch onset events and then uses those predictions to condition framewise pitch predictions. During inference, we restrict the predictions from the framewise detector by not allowing a new note to start unless the onset detector also agrees that an onset for that pitch is present in the frame. We focus on improving onsets and offsets together instead of either in isolation as we believe this correlates better with human musical perception. Our approach results in over a 100% relative improvement in note F1 score (with offsets) on the MAPS dataset. Furthermore, we extend the model to predict relative velocities of normalized audio which results in more natural-sounding transcriptions.

* Examples available at https://goo.gl/magenta/onsets-frames-examples 

  Click for Model/Code and Paper
Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Feb 21, 2019
Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.


  Click for Model/Code and Paper
Theano: A Python framework for fast computation of mathematical expressions

May 09, 2016
The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.

* 19 pages, 5 figures 

  Click for Model/Code and Paper