Models, code, and papers for "Congyan Lang":

Deep Reasoning with Multi-scale Context for Salient Object Detection

Jan 24, 2019
Zun Li, Congyan Lang, Yunpeng Chen, Junhao Liew, Jiashi Feng

To detect and segment salient objects accurately, existing methods are usually devoted to designing complex network architectures to fuse powerful features from the backbone networks. However, they put much less efforts on the saliency inference module and only use a few fully convolutional layers to perform saliency reasoning from the fused features. However, should feature fusion strategies receive much attention but saliency reasoning be ignored a lot? In this paper, we find that weakness of the saliency reasoning unit limits salient object detection performance, and claim that saliency reasoning after multi-scale convolutional features fusion is critical. To verify our findings, we first extract multi-scale features with a fully convolutional network, and then directly reason from these comprehensive features using a deep yet light-weighted network, modified from ShuffleNet, to fast and precisely predict salient objects. Such simple design is shown to be capable of reasoning from multi-scale saliency features as well as giving superior saliency detection performance with less computation cost. Experimental results show that our simple framework outperforms the best existing method with 2.3\% and 3.6\% promotion for F-measure scores, 2.8\% reduction for MAE score on PASCAL-S, DUT-OMRON and SOD datasets respectively.

* Draft, 6 pages, 3 figures, 1 table 

  Click for Model/Code and Paper
GM-PLL: Graph Matching based Partial Label Learning

Jan 10, 2019
Gengyu Lyu, Songhe Feng, Tao Wang, Congyan Lang, Yidong Li

Partial Label Learning (PLL) aims to learn from the data where each training example is associated with a set of candidate labels, among which only one is correct. The key to deal with such problem is to disambiguate the candidate label sets and obtain the correct assignments between instances and their candidate labels. In this paper, we interpret such assignments as instance-to-label matchings, and reformulate the task of PLL as a matching selection problem. To model such problem, we propose a novel Graph Matching based Partial Label Learning (GM-PLL) framework, where Graph Matching (GM) scheme is incorporated owing to its excellent capability of exploiting the instance and label relationship. Meanwhile, since conventional one-to-one GM algorithm does not satisfy the constraint of PLL problem that multiple instances may correspond to the same label, we extend a traditional one-to-one probabilistic matching algorithm to the many-to-one constraint, and make the proposed framework accommodate to the PLL problem. Moreover, we also propose a relaxed matching prediction model, which can improve the prediction accuracy via GM strategy. Extensive experiments on both artificial and real-world data sets demonstrate that the proposed method can achieve superior or comparable performance against the state-of-the-art methods.


  Click for Model/Code and Paper
HERA: Partial Label Learning by Combining Heterogeneous Loss with Sparse and Low-Rank Regularization

Jun 03, 2019
Gengyu Lyu, Songhe Feng, Yi Jin, Guojun Dai, Congyan Lang, Yidong Li

Partial Label Learning (PLL) aims to learn from the data where each training instance is associated with a set of candidate labels, among which only one is correct. Most existing methods deal with such problem by either treating each candidate label equally or identifying the ground-truth label iteratively. In this paper, we propose a novel PLL approach called HERA, which simultaneously incorporates the HeterogEneous Loss and the SpaRse and Low-rAnk procedure to estimate the labeling confidence for each instance while training the model. Specifically, the heterogeneous loss integrates the strengths of both the pairwise ranking loss and the pointwise reconstruction loss to provide informative label ranking and reconstruction information for label identification, while the embedded sparse and low-rank scheme constrains the sparsity of ground-truth label matrix and the low rank of noise label matrix to explore the global label relevance among the whole training data for improving the learning model. Extensive experiments on both artificial and real-world data sets demonstrate that our method can achieve superior or comparable performance against the state-of-the-art methods.


  Click for Model/Code and Paper
Domain Adaptive Attention Model for Unsupervised Cross-Domain Person Re-Identification

May 25, 2019
Yangru Huang, Peixi Peng, Yi Jin, Junliang Xing, Congyan Lang, Songhe Feng

Person re-identification (Re-ID) across multiple datasets is a challenging yet important task due to the possibly large distinctions between different datasets and the lack of training samples in practical applications. This work proposes a novel unsupervised domain adaption framework which transfers discriminative representations from the labeled source domain (dataset) to the unlabeled target domain (dataset). We propose to formulate the domain adaption task as an one-class classification problem with a novel domain similarity loss. Given the feature map of any image from a backbone network, a novel domain adaptive attention model (DAAM) first automatically learns to separate the feature map of an image to a domain-shared feature (DSH) map and a domain-specific feature (DSP) map simultaneously. Specially, the residual attention mechanism is designed to model DSP feature map for avoiding negative transfer. Then, a DSH branch and a DSP branch are introduced to learn DSH and DSP feature maps respectively. To reduce domain divergence caused by that the source and target datasets are collected from different environments, we force to project the DSH feature maps from different domains to a new nominal domain, and a novel domain similarity loss is proposed based on one-class classification. In addition, a novel unsupervised person Re-ID loss is proposed to take full use of unlabeled target data. Extensive experiments on the Market-1501 and DukeMTMC-reID benchmarks demonstrate state-of-the-art performance of the proposed method. Code will be released to facilitate further studies on the cross-domain person re-identification task.


  Click for Model/Code and Paper
Multiple-Human Parsing in the Wild

Mar 15, 2018
Jianshu Li, Jian Zhao, Yunchao Wei, Congyan Lang, Yidong Li, Terence Sim, Shuicheng Yan, Jiashi Feng

Human parsing is attracting increasing research attention. In this work, we aim to push the frontier of human parsing by introducing the problem of multi-human parsing in the wild. Existing works on human parsing mainly tackle single-person scenarios, which deviates from real-world applications where multiple persons are present simultaneously with interaction and occlusion. To address the multi-human parsing problem, we introduce a new multi-human parsing (MHP) dataset and a novel multi-human parsing model named MH-Parser. The MHP dataset contains multiple persons captured in real-world scenes with pixel-level fine-grained semantic annotations in an instance-aware setting. The MH-Parser generates global parsing maps and person instance masks simultaneously in a bottom-up fashion with the help of a new Graph-GAN model. We envision that the MHP dataset will serve as a valuable data resource to develop new multi-human parsing models, and the MH-Parser offers a strong baseline to drive future research for multi-human parsing in the wild.

* The first two authors are with equal contribution 

  Click for Model/Code and Paper
A Self-paced Regularization Framework for Partial-Label Learning

May 08, 2018
Gengyu Lyu, Songhe Feng, Congyang Lang

Partial label learning (PLL) aims to solve the problem where each training instance is associated with a set of candidate labels, one of which is the correct label. Most PLL algorithms try to disambiguate the candidate label set, by either simply treating each candidate label equally or iteratively identifying the true label. Nonetheless, existing algorithms usually treat all labels and instances equally, and the complexities of both labels and instances are not taken into consideration during the learning stage. Inspired by the successful application of self-paced learning strategy in machine learning field, we integrate the self-paced regime into the partial label learning framework and propose a novel Self-Paced Partial-Label Learning (SP-PLL) algorithm, which could control the learning process to alleviate the problem by ranking the priorities of the training examples together with their candidate labels during each learning iteration. Extensive experiments and comparisons with other baseline methods demonstrate the effectiveness and robustness of the proposed method.


  Click for Model/Code and Paper