Models, code, and papers for "Da-Cheng Juan":

InstaNAS: Instance-aware Neural Architecture Search

Nov 26, 2018
An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, Min Sun

Neural Architecture Search (NAS) aims at finding one "single" architecture that achieves the best accuracy for a given task such as image recognition.In this paper, we study the instance-level variation,and demonstrate that instance-awareness is an important yet currently missing component of NAS. Based on this observation, we propose InstaNAS for searching toward instance-level architectures;the controller is trained to search and form a "distribution of architectures" instead of a single final architecture. Then during the inference phase, the controller selects an architecture from the distribution, tailored for each unseen image to achieve both high accuracy and short latency. The experimental results show that InstaNAS reduces the inference latency without compromising classification accuracy. On average, InstaNAS achieves 48.9% latency reduction on CIFAR-10 and 40.2% latency reduction on CIFAR-100 with respect to MobileNetV2 architecture.

  Click for Model/Code and Paper
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures

Jul 25, 2018
Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, Min Sun

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performances in applications such as image classification and language modeling. However, these techniques typically ignore device-related objectives such as inference time, memory usage, and power consumption. Optimizing neural architecture for device-related objectives is immensely crucial for deploying deep networks on portable devices with limited computing resources. We propose DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures, optimizing for both device-related (e.g., inference time and memory usage) and device-agnostic (e.g., accuracy and model size) objectives. DPP-Net employs a compact search space inspired by current state-of-the-art mobile CNNs, and further improves search efficiency by adopting progressive search (Liu et al. 2017). Experimental results on CIFAR-10 are poised to demonstrate the effectiveness of Pareto-optimal networks found by DPP-Net, for three different devices: (1) a workstation with Titan X GPU, (2) NVIDIA Jetson TX1 embedded system, and (3) mobile phone with ARM Cortex-A53. Compared to CondenseNet and NASNet (Mobile), DPP-Net achieves better performances: higher accuracy and shorter inference time on various devices. Additional experimental results show that models found by DPP-Net also achieve considerably-good performance on ImageNet as well.

* 13 pages 9 figures, ECCV 2018 Camera Ready 

  Click for Model/Code and Paper
Natural Adversarial Sentence Generation with Gradient-based Perturbation

Sep 06, 2019
Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, Cho-Jui Hsieh

This work proposes a novel algorithm to generate natural language adversarial input for text classification models, in order to investigate the robustness of these models. It involves applying gradient-based perturbation on the sentence embeddings that are used as the features for the classifier, and learning a decoder for generation. We employ this method to a sentiment analysis model and verify its effectiveness in inducing incorrect predictions by the model. We also conduct quantitative and qualitative analysis on these examples and demonstrate that our approach can generate more natural adversaries. In addition, it can be used to successfully perform black-box attacks, which involves attacking other existing models whose parameters are not known. On a public sentiment analysis API, the proposed method introduces a 20% relative decrease in average accuracy and 74% relative increase in absolute error.

  Click for Model/Code and Paper
Searching Toward Pareto-Optimal Device-Aware Neural Architectures

Aug 30, 2018
An-Chieh Cheng, Jin-Dong Dong, Chi-Hung Hsu, Shu-Huan Chang, Min Sun, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely ignore other important factors imposed by the underlying hardware and devices, such as latency and energy, when making inference. In this paper, we first introduce the problem of NAS and provide a survey on recent works. Then we deep dive into two recent advancements on extending NAS into multiple-objective frameworks: MONAS and DPP-Net. Both MONAS and DPP-Net are capable of optimizing accuracy and other objectives imposed by devices, searching for neural architectures that can be best deployed on a wide spectrum of devices: from embedded systems and mobile devices to workstations. Experimental results are poised to show that architectures found by MONAS and DPP-Net achieves Pareto optimality w.r.t the given objectives for various devices.

* ICCAD'18 Invited Paper 

  Click for Model/Code and Paper
HyperPower: Power- and Memory-Constrained Hyper-Parameter Optimization for Neural Networks

Dec 06, 2017
Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, Diana Marculescu

While selecting the hyper-parameters of Neural Networks (NNs) has been so far treated as an art, the emergence of more complex, deeper architectures poses increasingly more challenges to designers and Machine Learning (ML) practitioners, especially when power and memory constraints need to be considered. In this work, we propose HyperPower, a framework that enables efficient Bayesian optimization and random search in the context of power- and memory-constrained hyper-parameter optimization for NNs running on a given hardware platform. HyperPower is the first work (i) to show that power consumption can be used as a low-cost, a priori known constraint, and (ii) to propose predictive models for the power and memory of NNs executing on GPUs. Thanks to HyperPower, the number of function evaluations and the best test error achieved by a constraint-unaware method are reached up to 112.99x and 30.12x faster, respectively, while never considering invalid configurations. HyperPower significantly speeds up the hyper-parameter optimization, achieving up to 57.20x more function evaluations compared to constraint-unaware methods for a given time interval, effectively yielding significant accuracy improvements by up to 67.6%.

* This conference paper will appear in the proceedings of DATE 2018 

  Click for Model/Code and Paper
NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Networks

Oct 15, 2017
Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, Diana Marculescu

"How much energy is consumed for an inference made by a convolutional neural network (CNN)?" With the increased popularity of CNNs deployed on the wide-spectrum of platforms (from mobile devices to workstations), the answer to this question has drawn significant attention. From lengthening battery life of mobile devices to reducing the energy bill of a datacenter, it is important to understand the energy efficiency of CNNs during serving for making an inference, before actually training the model. In this work, we propose NeuralPower: a layer-wise predictive framework based on sparse polynomial regression, for predicting the serving energy consumption of a CNN deployed on any GPU platform. Given the architecture of a CNN, NeuralPower provides an accurate prediction and breakdown for power and runtime across all layers in the whole network, helping machine learners quickly identify the power, runtime, or energy bottlenecks. We also propose the "energy-precision ratio" (EPR) metric to guide machine learners in selecting an energy-efficient CNN architecture that better trades off the energy consumption and prediction accuracy. The experimental results show that the prediction accuracy of the proposed NeuralPower outperforms the best published model to date, yielding an improvement in accuracy of up to 68.5%. We also assess the accuracy of predictions at the network level, by predicting the runtime, power, and energy of state-of-the-art CNN architectures, achieving an average accuracy of 88.24% in runtime, 88.34% in power, and 97.21% in energy. We comprehensively corroborate the effectiveness of NeuralPower as a powerful framework for machine learners by testing it on different GPU platforms and Deep Learning software tools.

* Accepted as a conference paper at ACML 2017 

  Click for Model/Code and Paper
DC-Prophet: Predicting Catastrophic Machine Failures in DataCenters

Aug 14, 2017
You-Luen Lee, Da-Cheng Juan, Xuan-An Tseng, Yu-Ting Chen, Shih-Chieh Chang

When will a server fail catastrophically in an industrial datacenter? Is it possible to forecast these failures so preventive actions can be taken to increase the reliability of a datacenter? To answer these questions, we have studied what are probably the largest, publicly available datacenter traces, containing more than 104 million events from 12,500 machines. Among these samples, we observe and categorize three types of machine failures, all of which are catastrophic and may lead to information loss, or even worse, reliability degradation of a datacenter. We further propose a two-stage framework-DC-Prophet-based on One-Class Support Vector Machine and Random Forest. DC-Prophet extracts surprising patterns and accurately predicts the next failure of a machine. Experimental results show that DC-Prophet achieves an AUC of 0.93 in predicting the next machine failure, and a F3-score of 0.88 (out of 1). On average, DC-Prophet outperforms other classical machine learning methods by 39.45% in F3-score.

* 13 pages, 5 figures, accepted by 2017 ECML PKDD 

  Click for Model/Code and Paper
COCO-GAN: Generation by Parts via Conditional Coordinating

Apr 16, 2019
Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, Hwann-Tzong Chen

Humans can only interact with part of the surrounding environment due to biological restrictions. Therefore, we learn to reason the spatial relationships across a series of observations to piece together the surrounding environment. Inspired by such behavior and the fact that machines also have computational constraints, we propose \underline{CO}nditional \underline{CO}ordinate GAN (COCO-GAN) of which the generator generates images by parts based on their spatial coordinates as the condition. On the other hand, the discriminator learns to justify realism across multiple assembled patches by global coherence, local appearance, and edge-crossing continuity. Despite the full images are never generated during training, we show that COCO-GAN can produce \textbf{state-of-the-art-quality} full images during inference. We further demonstrate a variety of novel applications enabled by teaching the network to be aware of coordinates. First, we perform extrapolation to the learned coordinate manifold and generate off-the-boundary patches. Combining with the originally generated full image, COCO-GAN can produce images that are larger than training samples, which we called "beyond-boundary generation". We then showcase panorama generation within a cylindrical coordinate system that inherently preserves horizontally cyclic topology. On the computation side, COCO-GAN has a built-in divide-and-conquer paradigm that reduces memory requisition during training and inference, provides high-parallelism, and can generate parts of images on-demand.

* All images are compressed due to size limit, please access the full-resolution version via: 

  Click for Model/Code and Paper
Escaping from Collapsing Modes in a Constrained Space

Aug 22, 2018
Chia-Che Chang, Chieh Hubert Lin, Che-Rung Lee, Da-Cheng Juan, Wei Wei, Hwann-Tzong Chen

Generative adversarial networks (GANs) often suffer from unpredictable mode-collapsing during training. We study the issue of mode collapse of Boundary Equilibrium Generative Adversarial Network (BEGAN), which is one of the state-of-the-art generative models. Despite its potential of generating high-quality images, we find that BEGAN tends to collapse at some modes after a period of training. We propose a new model, called \emph{BEGAN with a Constrained Space} (BEGAN-CS), which includes a latent-space constraint in the loss function. We show that BEGAN-CS can significantly improve training stability and suppress mode collapse without either increasing the model complexity or degrading the image quality. Further, we visualize the distribution of latent vectors to elucidate the effect of latent-space constraint. The experimental results show that our method has additional advantages of being able to train on small datasets and to generate images similar to a given real image yet with variations of designated attributes on-the-fly.

* To appear in ECCV 2018 

  Click for Model/Code and Paper
Improving Adversarial Robustness via Guided Complement Entropy

Mar 23, 2019
Hao-Yun Chen, Jhao-Hong Liang, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan

Model robustness has been an important issue, since adding small adversarial perturbations to images is sufficient to drive the model accuracy down to nearly zero. In this paper, we propose a new training objective "Guided Complement Entropy" (GCE) that has dual desirable effects: (a) neutralizing the predicted probabilities of incorrect classes, and (b) maximizing the predicted probability of the ground-truth class, particularly when (a) is achieved. Training with GCE encourages models to learn latent representations where samples of different classes form distinct clusters, which we argue, improves the model robustness against adversarial perturbations. Furthermore, compared with the state-of-the-arts trained with cross-entropy, same models trained with GCE achieve significant improvements on the robustness against white-box adversarial attacks, both with and without adversarial training. When no attack is present, training with GCE also outperforms cross-entropy in terms of model accuracy.

  Click for Model/Code and Paper
MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning

Jun 27, 2018
Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Shih-Chieh Chang

Recent studies on neural architecture search have shown that automatically designed neural networks perform as good as human-designed architectures. While most existing works on neural architecture search aim at finding architectures that optimize for prediction accuracy. These methods may generate complex architectures consuming excessively high energy consumption, which is not suitable for computing environment with limited power budgets. We propose MONAS, a Multi-Objective Neural Architecture Search with novel reward functions that consider both prediction accuracy and power consumption when exploring neural architectures. MONAS effectively explores the design space and searches for architectures satisfying the given requirements. The experimental results demonstrate that the architectures found by MONAS achieve accuracy comparable to or better than the state-of-the-art models, while having better energy efficiency.

  Click for Model/Code and Paper
Complement Objective Training

Mar 21, 2019
Hao-Yun Chen, Pei-Hsin Wang, Chun-Hao Liu, Shih-Chieh Chang, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, Da-Cheng Juan

Learning with a primary objective, such as softmax cross entropy for classification and sequence generation, has been the norm for training deep neural networks for years. Although being a widely-adopted approach, using cross entropy as the primary objective exploits mostly the information from the ground-truth class for maximizing data likelihood, and largely ignores information from the complement (incorrect) classes. We argue that, in addition to the primary objective, training also using a complement objective that leverages information from the complement classes can be effective in improving model performance. This motivates us to study a new training paradigm that maximizes the likelihood of the groundtruth class while neutralizing the probabilities of the complement classes. We conduct extensive experiments on multiple tasks ranging from computer vision to natural language understanding. The experimental results confirm that, compared to the conventional training with just one primary objective, training also with the complement objective further improves the performance of the state-of-the-art models across all tasks. In addition to the accuracy improvement, we also show that models trained with both primary and complement objectives are more robust to single-step adversarial attacks.

* ICLR'19 Camera Ready 

  Click for Model/Code and Paper
Graph-RISE: Graph-Regularized Image Semantic Embedding

Feb 14, 2019
Da-Cheng Juan, Chun-Ta Lu, Zhen Li, Futang Peng, Aleksei Timofeev, Yi-Ting Chen, Yaxi Gao, Tom Duerig, Andrew Tomkins, Sujith Ravi

Learning image representations to capture fine-grained semantics has been a challenging and important task enabling many applications such as image search and clustering. In this paper, we present Graph-Regularized Image Semantic Embedding (Graph-RISE), a large-scale neural graph learning framework that allows us to train embeddings to discriminate an unprecedented O(40M) ultra-fine-grained semantic labels. Graph-RISE outperforms state-of-the-art image embedding algorithms on several evaluation tasks, including image classification and triplet ranking. We provide case studies to demonstrate that, qualitatively, image retrieval based on Graph-RISE effectively captures semantics and, compared to the state-of-the-art, differentiates nuances at levels that are closer to human-perception.

* 9 pages, 7 figures 

  Click for Model/Code and Paper