Recent advances in deep learning have achieved impressive gains in classification accuracy on a variety of types of data, including images and text. Despite these gains, however, concerns have been raised about the calibration, robustness, and interpretability of these models. In this paper we propose a simple way to modify any conventional deep architecture to automatically provide more transparent explanations for classification decisions, as well as an intuitive notion of the credibility of each prediction. Specifically, we draw on ideas from nonparametric kernel regression, and propose to predict labels based on a weighted sum of training instances, where the weights are determined by distance in a learned instance-embedding space. Working within the framework of conformal methods, we propose a new measure of nonconformity suggested by our model, and experimentally validate the accompanying theoretical expectations, demonstrating improved transparency, controlled error rates, and robustness to out-of-domain data, without compromising on accuracy or calibration. Click to Read Paper
Most real-world document collections involve various types of metadata, such as author, source, and date, and yet the most commonly-used approaches to modeling text corpora ignore this information. While specialized models have been developed for particular applications, few are widely used in practice, as customization typically requires derivation of a custom inference algorithm. In this paper, we build on recent advances in variational inference methods and propose a general neural framework, based on topic models, to enable flexible incorporation of metadata and allow for rapid exploration of alternative models. Our approach achieves strong performance, with a manageable tradeoff between perplexity, coherence, and sparsity. Finally, we demonstrate the potential of our framework through an exploration of a corpus of articles about US immigration. Click to Read Paper
Understanding how ideas relate to each other is a fundamental question in many domains, ranging from intellectual history to public communication. Because ideas are naturally embedded in texts, we propose the first framework to systematically characterize the relations between ideas based on their occurrence in a corpus of documents, independent of how these ideas are represented. Combining two statistics --- cooccurrence within documents and prevalence correlation over time --- our approach reveals a number of different ways in which ideas can cooperate and compete. For instance, two ideas can closely track each other's prevalence over time, and yet rarely cooccur, almost like a "cold war" scenario. We observe that pairwise cooccurrence and prevalence correlation exhibit different distributions. We further demonstrate that our approach is able to uncover intriguing relations between ideas through in-depth case studies on news articles and research papers. Click to Read Paper