When applying machine learning to problems in NLP, there are many choices to make about how to represent input texts. These choices can have a big effect on performance, but they are often uninteresting to researchers or practitioners who simply need a module that performs well. We propose an approach to optimizing over this space of choices, formulating the problem as global optimization. We apply a sequential model-based optimization technique and show that our method makes standard linear models competitive with more sophisticated, expensive state-of-the-art methods based on latent variable models or neural networks on various topic classification and sentiment analysis problems. Our approach is a first step towards black-box NLP systems that work with raw text and do not require manual tuning. Click to Read Paper
We introduce a neural network that represents sentences by composing their words according to induced binary parse trees. We use Tree-LSTM as our composition function, applied along a tree structure found by a fully differentiable natural language chart parser. Our model simultaneously optimises both the composition function and the parser, thus eliminating the need for externally-provided parse trees which are normally required for Tree-LSTM. It can therefore be seen as a tree-based RNN that is unsupervised with respect to the parse trees. As it is fully differentiable, our model is easily trained with an off-the-shelf gradient descent method and backpropagation. We demonstrate that it achieves better performance compared to various supervised Tree-LSTM architectures on a textual entailment task and a reverse dictionary task. Click to Read Paper
We consider the scenario where the parameters of a probabilistic model are expected to vary over time. We construct a novel prior distribution that promotes sparsity and adapts the strength of correlation between parameters at successive timesteps, based on the data. We derive approximate variational inference procedures for learning and prediction with this prior. We test the approach on two tasks: forecasting financial quantities from relevant text, and modeling language contingent on time-varying financial measurements. Click to Read Paper
Solving algebraic word problems requires executing a series of arithmetic operations---a program---to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs. Click to Read Paper
We empirically characterize the performance of discriminative and generative LSTM models for text classification. We find that although RNN-based generative models are more powerful than their bag-of-words ancestors (e.g., they account for conditional dependencies across words in a document), they have higher asymptotic error rates than discriminatively trained RNN models. However we also find that generative models approach their asymptotic error rate more rapidly than their discriminative counterparts---the same pattern that Ng & Jordan (2001) proved holds for linear classification models that make more naive conditional independence assumptions. Building on this finding, we hypothesize that RNN-based generative classification models will be more robust to shifts in the data distribution. This hypothesis is confirmed in a series of experiments in zero-shot and continual learning settings that show that generative models substantially outperform discriminative models. Click to Read Paper
We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentiment analysis---demonstrate that the method outperforms or is competitive with state-of-the-art methods. Our word representations are available at \url{http://www.ark.cs.cmu.edu/dyogatam/wordvecs/}. Click to Read Paper
We use reinforcement learning to learn tree-structured neural networks for computing representations of natural language sentences. In contrast with prior work on tree-structured models in which the trees are either provided as input or predicted using supervision from explicit treebank annotations, the tree structures in this work are optimized to improve performance on a downstream task. Experiments demonstrate the benefit of learning task-specific composition orders, outperforming both sequential encoders and recursive encoders based on treebank annotations. We analyze the induced trees and show that while they discover some linguistically intuitive structures (e.g., noun phrases, simple verb phrases), they are different than conventional English syntactic structures. Click to Read Paper
Current distributed representations of words show little resemblance to theories of lexical semantics. The former are dense and uninterpretable, the latter largely based on familiar, discrete classes (e.g., supersenses) and relations (e.g., synonymy and hypernymy). We propose methods that transform word vectors into sparse (and optionally binary) vectors. The resulting representations are more similar to the interpretable features typically used in NLP, though they are discovered automatically from raw corpora. Because the vectors are highly sparse, they are computationally easy to work with. Most importantly, we find that they outperform the original vectors on benchmark tasks. Click to Read Paper
We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale. Click to Read Paper