Models, code, and papers for "Danilo Rezende":

Taming VAEs

Oct 01, 2018
Danilo Jimenez Rezende, Fabio Viola

In spite of remarkable progress in deep latent variable generative modeling, training still remains a challenge due to a combination of optimization and generalization issues. In practice, a combination of heuristic algorithms (such as hand-crafted annealing of KL-terms) is often used in order to achieve the desired results, but such solutions are not robust to changes in model architecture or dataset. The best settings can often vary dramatically from one problem to another, which requires doing expensive parameter sweeps for each new case. Here we develop on the idea of training VAEs with additional constraints as a way to control their behaviour. We first present a detailed theoretical analysis of constrained VAEs, expanding our understanding of how these models work. We then introduce and analyze a practical algorithm termed Generalized ELBO with Constrained Optimization, GECO. The main advantage of GECO for the machine learning practitioner is a more intuitive, yet principled, process of tuning the loss. This involves defining of a set of constraints, which typically have an explicit relation to the desired model performance, in contrast to tweaking abstract hyper-parameters which implicitly affect the model behavior. Encouraging experimental results in several standard datasets indicate that GECO is a very robust and effective tool to balance reconstruction and compression constraints.

  Click for Model/Code and Paper
Variational Inference with Normalizing Flows

Jun 14, 2016
Danilo Jimenez Rezende, Shakir Mohamed

The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.

* Proceedings of the 32nd International Conference on Machine Learning 

  Click for Model/Code and Paper
Variational inference for Monte Carlo objectives

Jun 01, 2016
Andriy Mnih, Danilo J. Rezende

Recent progress in deep latent variable models has largely been driven by the development of flexible and scalable variational inference methods. Variational training of this type involves maximizing a lower bound on the log-likelihood, using samples from the variational posterior to compute the required gradients. Recently, Burda et al. (2016) have derived a tighter lower bound using a multi-sample importance sampling estimate of the likelihood and showed that optimizing it yields models that use more of their capacity and achieve higher likelihoods. This development showed the importance of such multi-sample objectives and explained the success of several related approaches. We extend the multi-sample approach to discrete latent variables and analyze the difficulty encountered when estimating the gradients involved. We then develop the first unbiased gradient estimator designed for importance-sampled objectives and evaluate it at training generative and structured output prediction models. The resulting estimator, which is based on low-variance per-sample learning signals, is both simpler and more effective than the NVIL estimator proposed for the single-sample variational objective, and is competitive with the currently used biased estimators.

* Appears in Proceedings of the 33rd International Conference on Machine Learning (ICML), New York, NY, USA, 2016. JMLR: W&CP volume 48 

  Click for Model/Code and Paper
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning

Sep 29, 2015
Shakir Mohamed, Danilo Jimenez Rezende

The mutual information is a core statistical quantity that has applications in all areas of machine learning, whether this is in training of density models over multiple data modalities, in maximising the efficiency of noisy transmission channels, or when learning behaviour policies for exploration by artificial agents. Most learning algorithms that involve optimisation of the mutual information rely on the Blahut-Arimoto algorithm --- an enumerative algorithm with exponential complexity that is not suitable for modern machine learning applications. This paper provides a new approach for scalable optimisation of the mutual information by merging techniques from variational inference and deep learning. We develop our approach by focusing on the problem of intrinsically-motivated learning, where the mutual information forms the definition of a well-known internal drive known as empowerment. Using a variational lower bound on the mutual information, combined with convolutional networks for handling visual input streams, we develop a stochastic optimisation algorithm that allows for scalable information maximisation and empowerment-based reasoning directly from pixels to actions.

* Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2015) 

  Click for Model/Code and Paper
Variational Intrinsic Control

Nov 22, 2016
Karol Gregor, Danilo Jimenez Rezende, Daan Wierstra

In this paper we introduce a new unsupervised reinforcement learning method for discovering the set of intrinsic options available to an agent. This set is learned by maximizing the number of different states an agent can reliably reach, as measured by the mutual information between the set of options and option termination states. To this end, we instantiate two policy gradient based algorithms, one that creates an explicit embedding space of options and one that represents options implicitly. The algorithms also provide an explicit measure of empowerment in a given state that can be used by an empowerment maximizing agent. The algorithm scales well with function approximation and we demonstrate the applicability of the algorithm on a range of tasks.

* 15 pages, 6 figures 

  Click for Model/Code and Paper
Normalizing Flows on Riemannian Manifolds

Nov 09, 2016
Mevlana C. Gemici, Danilo Rezende, Shakir Mohamed

We consider the problem of density estimation on Riemannian manifolds. Density estimation on manifolds has many applications in fluid-mechanics, optics and plasma physics and it appears often when dealing with angular variables (such as used in protein folding, robot limbs, gene-expression) and in general directional statistics. In spite of the multitude of algorithms available for density estimation in the Euclidean spaces $\mathbf{R}^n$ that scale to large n (e.g. normalizing flows, kernel methods and variational approximations), most of these methods are not immediately suitable for density estimation in more general Riemannian manifolds. We revisit techniques related to homeomorphisms from differential geometry for projecting densities to sub-manifolds and use it to generalize the idea of normalizing flows to more general Riemannian manifolds. The resulting algorithm is scalable, simple to implement and suitable for use with automatic differentiation. We demonstrate concrete examples of this method on the n-sphere $\mathbf{S}^n$.

* 3 pages, 2 figures, Submitted to Workshop on Bayesian Deep Learning at NIPS 2016 

  Click for Model/Code and Paper
Stochastic Backpropagation and Approximate Inference in Deep Generative Models

May 30, 2014
Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra

We marry ideas from deep neural networks and approximate Bayesian inference to derive a generalised class of deep, directed generative models, endowed with a new algorithm for scalable inference and learning. Our algorithm introduces a recognition model to represent approximate posterior distributions, and that acts as a stochastic encoder of the data. We develop stochastic back-propagation -- rules for back-propagation through stochastic variables -- and use this to develop an algorithm that allows for joint optimisation of the parameters of both the generative and recognition model. We demonstrate on several real-world data sets that the model generates realistic samples, provides accurate imputations of missing data and is a useful tool for high-dimensional data visualisation.

* Appears In Proceedings of the 31st International Conference on Machine Learning (ICML), JMLR: W\&CP volume 32, 2014 

  Click for Model/Code and Paper
Equivariant Hamiltonian Flows

Sep 30, 2019
Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, Peter Toth

This paper introduces equivariant hamiltonian flows, a method for learning expressive densities that are invariant with respect to a known Lie-algebra of local symmetry transformations while providing an equivariant representation of the data. We provide proof of principle demonstrations of how such flows can be learnt, as well as how the addition of symmetry invariance constraints can improve data efficiency and generalisation. Finally, we make connections to disentangled representation learning and show how this work relates to a recently proposed definition.

  Click for Model/Code and Paper
Beyond Greedy Ranking: Slate Optimization via List-CVAE

May 24, 2018
Ray Jiang, Sven Gowal, Timothy A. Mann, Danilo J. Rezende

The conventional approach to solving the recommendation problem is through greedy ranking by prediction scores for individual document candidates. However these methods fail to optimize the slate as a whole, and often struggle at capturing biases caused by the page layout and interdependencies between documents. The slate recommendation problem aims to find the optimal, ordered subset of documents, a.k.a. slate, given the page layout to serve users recommendations. Solving this problem is hard due to combinatorial explosion of document candidates and their display positions on the page. In this paper, we introduce List Conditional Variational Auto-Encoders (List-CVAE) to learn the joint distribution of documents on the slate conditional on user responses, and directly generate slates. Experiments on simulated and real-world data show that List-CVAE outperforms greedy ranking methods consistently on various scales of documents corpora.

* Preliminary work. Under review by the Neural Information Processing Systems (NIPS) 2018 

  Click for Model/Code and Paper
Variational Memory Addressing in Generative Models

Sep 21, 2017
Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo J. Rezende

Aiming to augment generative models with external memory, we interpret the output of a memory module with stochastic addressing as a conditional mixture distribution, where a read operation corresponds to sampling a discrete memory address and retrieving the corresponding content from memory. This perspective allows us to apply variational inference to memory addressing, which enables effective training of the memory module by using the target information to guide memory lookups. Stochastic addressing is particularly well-suited for generative models as it naturally encourages multimodality which is a prominent aspect of most high-dimensional datasets. Treating the chosen address as a latent variable also allows us to quantify the amount of information gained with a memory lookup and measure the contribution of the memory module to the generative process. To illustrate the advantages of this approach we incorporate it into a variational autoencoder and apply the resulting model to the task of generative few-shot learning. The intuition behind this architecture is that the memory module can pick a relevant template from memory and the continuous part of the model can concentrate on modeling remaining variations. We demonstrate empirically that our model is able to identify and access the relevant memory contents even with hundreds of unseen Omniglot characters in memory

  Click for Model/Code and Paper
Semi-Supervised Learning with Deep Generative Models

Oct 31, 2014
Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling

The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and develop new models that allow for effective generalisation from small labelled data sets to large unlabelled ones. Generative approaches have thus far been either inflexible, inefficient or non-scalable. We show that deep generative models and approximate Bayesian inference exploiting recent advances in variational methods can be used to provide significant improvements, making generative approaches highly competitive for semi-supervised learning.

* To appear in the proceedings of Neural Information Processing Systems (NIPS) 2014 

  Click for Model/Code and Paper
Normalizing Flows for Probabilistic Modeling and Inference

Dec 05, 2019
George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, Balaji Lakshminarayanan

Normalizing flows provide a general mechanism for defining expressive probability distributions, only requiring the specification of a (usually simple) base distribution and a series of bijective transformations. There has been much recent work on normalizing flows, ranging from improving their expressive power to expanding their application. We believe the field has now matured and is in need of a unified perspective. In this review, we attempt to provide such a perspective by describing flows through the lens of probabilistic modeling and inference. We place special emphasis on the fundamental principles of flow design, and discuss foundational topics such as expressive power and computational trade-offs. We also broaden the conceptual framing of flows by relating them to more general probability transformations. Lastly, we summarize the use of flows for tasks such as generative modeling, approximate inference, and supervised learning.

* Review article. 60 pages, 4 figures 

  Click for Model/Code and Paper
Towards Interpretable Reinforcement Learning Using Attention Augmented Agents

Jun 06, 2019
Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, Danilo J. Rezende

Inspired by recent work in attention models for image captioning and question answering, we present a soft attention model for the reinforcement learning domain. This model uses a soft, top-down attention mechanism to create a bottleneck in the agent, forcing it to focus on task-relevant information by sequentially querying its view of the environment. The output of the attention mechanism allows direct observation of the information used by the agent to select its actions, enabling easier interpretation of this model than of traditional models. We analyze different strategies that the agents learn and show that a handful of strategies arise repeatedly across different games. We also show that the model learns to query separately about space and content (`where' vs. `what'). We demonstrate that an agent using this mechanism can achieve performance competitive with state-of-the-art models on ATARI tasks while still being interpretable.

  Click for Model/Code and Paper
Interaction Networks for Learning about Objects, Relations and Physics

Dec 01, 2016
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu

Reasoning about objects, relations, and physics is central to human intelligence, and a key goal of artificial intelligence. Here we introduce the interaction network, a model which can reason about how objects in complex systems interact, supporting dynamical predictions, as well as inferences about the abstract properties of the system. Our model takes graphs as input, performs object- and relation-centric reasoning in a way that is analogous to a simulation, and is implemented using deep neural networks. We evaluate its ability to reason about several challenging physical domains: n-body problems, rigid-body collision, and non-rigid dynamics. Our results show it can be trained to accurately simulate the physical trajectories of dozens of objects over thousands of time steps, estimate abstract quantities such as energy, and generalize automatically to systems with different numbers and configurations of objects and relations. Our interaction network implementation is the first general-purpose, learnable physics engine, and a powerful general framework for reasoning about object and relations in a wide variety of complex real-world domains.

* Published in NIPS 2016 

  Click for Model/Code and Paper
One-Shot Generalization in Deep Generative Models

May 25, 2016
Danilo Jimenez Rezende, Shakir Mohamed, Ivo Danihelka, Karol Gregor, Daan Wierstra

Humans have an impressive ability to reason about new concepts and experiences from just a single example. In particular, humans have an ability for one-shot generalization: an ability to encounter a new concept, understand its structure, and then be able to generate compelling alternative variations of the concept. We develop machine learning systems with this important capacity by developing new deep generative models, models that combine the representational power of deep learning with the inferential power of Bayesian reasoning. We develop a class of sequential generative models that are built on the principles of feedback and attention. These two characteristics lead to generative models that are among the state-of-the art in density estimation and image generation. We demonstrate the one-shot generalization ability of our models using three tasks: unconditional sampling, generating new exemplars of a given concept, and generating new exemplars of a family of concepts. In all cases our models are able to generate compelling and diverse samples---having seen new examples just once---providing an important class of general-purpose models for one-shot machine learning.

* 8pgs, 1pg references, 1pg appendix, In Proceedings of the 33rd International Conference on Machine Learning, JMLR: W&CP volume 48, 2016 

  Click for Model/Code and Paper
Towards Conceptual Compression

Apr 29, 2016
Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, Daan Wierstra

We introduce a simple recurrent variational auto-encoder architecture that significantly improves image modeling. The system represents the state-of-the-art in latent variable models for both the ImageNet and Omniglot datasets. We show that it naturally separates global conceptual information from lower level details, thus addressing one of the fundamentally desired properties of unsupervised learning. Furthermore, the possibility of restricting ourselves to storing only global information about an image allows us to achieve high quality 'conceptual compression'.

* 14 pages, 13 figures 

  Click for Model/Code and Paper
DRAW: A Recurrent Neural Network For Image Generation

May 20, 2015
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra

This paper introduces the Deep Recurrent Attentive Writer (DRAW) neural network architecture for image generation. DRAW networks combine a novel spatial attention mechanism that mimics the foveation of the human eye, with a sequential variational auto-encoding framework that allows for the iterative construction of complex images. The system substantially improves on the state of the art for generative models on MNIST, and, when trained on the Street View House Numbers dataset, it generates images that cannot be distinguished from real data with the naked eye.

  Click for Model/Code and Paper
Towards Principled Unsupervised Learning

Dec 03, 2015
Ilya Sutskever, Rafal Jozefowicz, Karol Gregor, Danilo Rezende, Tim Lillicrap, Oriol Vinyals

General unsupervised learning is a long-standing conceptual problem in machine learning. Supervised learning is successful because it can be solved by the minimization of the training error cost function. Unsupervised learning is not as successful, because the unsupervised objective may be unrelated to the supervised task of interest. For an example, density modelling and reconstruction have often been used for unsupervised learning, but they did not produced the sought-after performance gains, because they have no knowledge of the supervised tasks. In this paper, we present an unsupervised cost function which we name the Output Distribution Matching (ODM) cost, which measures a divergence between the distribution of predictions and distributions of labels. The ODM cost is appealing because it is consistent with the supervised cost in the following sense: a perfect supervised classifier is also perfect according to the ODM cost. Therefore, by aggressively optimizing the ODM cost, we are almost guaranteed to improve our supervised performance whenever the space of possible predictions is exponentially large. We demonstrate that the ODM cost works well on number of small and semi-artificial datasets using no (or almost no) labelled training cases. Finally, we show that the ODM cost can be used for one-shot domain adaptation, which allows the model to classify inputs that differ from the input distribution in significant ways without the need for prior exposure to the new domain.

  Click for Model/Code and Paper
Information bottleneck through variational glasses

Dec 05, 2019
Slava Voloshynovskiy, Mouad Kondah, Shideh Rezaeifar, Olga Taran, Taras Holotyak, Danilo Jimenez Rezende

Information bottleneck (IB) principle [1] has become an important element in information-theoretic analysis of deep models. Many state-of-the-art generative models of both Variational Autoencoder (VAE) [2; 3] and Generative Adversarial Networks (GAN) [4] families use various bounds on mutual information terms to introduce certain regularization constraints [5; 6; 7; 8; 9; 10]. Accordingly, the main difference between these models consists in add regularization constraints and targeted objectives. In this work, we will consider the IB framework for three classes of models that include supervised, unsupervised and adversarial generative models. We will apply a variational decomposition leading a common structure and allowing easily establish connections between these models and analyze underlying assumptions. Based on these results, we focus our analysis on unsupervised setup and reconsider the VAE family. In particular, we present a new interpretation of VAE family based on the IB framework using a direct decomposition of mutual information terms and show some interesting connections to existing methods such as VAE [2; 3], beta-VAE [11], AAE [12], InfoVAE [5] and VAE/GAN [13]. Instead of adding regularization constraints to an evidence lower bound (ELBO) [2; 3], which itself is a lower bound, we show that many known methods can be considered as a product of variational decomposition of mutual information terms in the IB framework. The proposed decomposition might also contribute to the interpretability of generative models of both VAE and GAN families and create a new insights to a generative compression [14; 15; 16; 17]. It can also be of interest for the analysis of novelty detection based on one-class classifiers [18] with the IB based discriminators.

  Click for Model/Code and Paper