Research papers and code for "David Meger":
This paper describes a new approach for training generative adversarial networks (GAN) to understand the detailed 3D shape of objects. While GANs have been used in this domain previously, they are notoriously hard to train, especially for the complex joint data distribution over 3D objects of many categories and orientations. Our method extends previous work by employing the Wasserstein distance normalized with gradient penalization as a training objective. This enables improved generation from the joint object shape distribution. Our system can also reconstruct 3D shape from 2D images and perform shape completion from occluded 2.5D range scans. We achieve notable quantitative improvements in comparison to existing baselines

* 10 pages, accepted at CORL. Figures are best view in color, and details only appear when zoomed in
Click to Read Paper and Get Code
Reinforcement learning traditionally considers the task of balancing exploration and exploitation. This work examines batch reinforcement learning--the task of maximally exploiting a given batch of off-policy data, without further data collection. We demonstrate that due to errors introduced by extrapolation, standard off-policy deep reinforcement learning algorithms, such as DQN and DDPG, are only capable of learning with data correlated to their current policy, making them ineffective for most off-policy applications. We introduce a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts the action space to force the agent towards behaving on-policy with respect to a subset of the given data. We extend this notion to deep reinforcement learning, and to the best of our knowledge, present the first continuous control deep reinforcement learning algorithm which can learn effectively from uncorrelated off-policy data.

Click to Read Paper and Get Code
We consider the problem of scaling deep generative shape models to high-resolution. Drawing motivation from the canonical view representation of objects, we introduce a novel method for the fast up-sampling of 3D objects in voxel space through networks that perform super-resolution on the six orthographic depth projections. This allows us to generate high-resolution objects with more efficient scaling than methods which work directly in 3D. We decompose the problem of 2D depth super-resolution into silhouette and depth prediction to capture both structure and fine detail. This allows our method to generate sharp edges more easily than an individual network. We evaluate our work on multiple experiments concerning high-resolution 3D objects, and show our system is capable of accurately producing objects at resolutions as large as 512$\mathbf{\times}$512$\mathbf{\times}$512 -- the highest resolution reported for this task, to our knowledge. We achieve state-of-the-art performance on 3D object reconstruction from RGB images on the ShapeNet dataset, and further demonstrate the first effective 3D super-resolution method.

* 11 pages
Click to Read Paper and Get Code
Inspired by ideas in cognitive science, we propose a novel and general approach to solve human motion understanding via pattern completion on a learned latent representation space. Our model outperforms current state-of-the-art methods in human motion prediction across a number of tasks, with no customization. To construct a latent representation for time-series of various lengths, we propose a new and generic autoencoder based on sequence-to-sequence learning. While traditional inference strategies find a correlation between an input and an output, we use pattern completion, which views the input as a partial pattern and to predict the best corresponding complete pattern. Our results demonstrate that this approach has advantages when combined with our autoencoder in solving human motion prediction, motion generation and action classification.

* Accepted in the 16th Conference on Computer and Robot Vision (CRV 2019)
Click to Read Paper and Get Code
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.

* Accepted at ICML 2018
Click to Read Paper and Get Code
Decentralized receding horizon control (D-RHC) provides a mechanism for coordination in multi-agent settings without a centralized command center. However, combining a set of different goals, costs, and constraints to form an efficient optimization objective for D-RHC can be difficult. To allay this problem, we use a meta-learning process -- cost adaptation -- which generates the optimization objective for D-RHC to solve based on a set of human-generated priors (cost and constraint functions) and an auxiliary heuristic. We use this adaptive D-RHC method for control of mesh-networked swarm agents. This formulation allows a wide range of tasks to be encoded and can account for network delays, heterogeneous capabilities, and increasingly large swarms through the adaptation mechanism. We leverage the Unity3D game engine to build a simulator capable of introducing artificial networking failures and delays in the swarm. Using the simulator we validate our method on an example coordinated exploration task. We demonstrate that cost adaptation allows for more efficient and safer task completion under varying environment conditions and increasingly large swarm sizes. We release our simulator and code to the community for future work.

* Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018
Click to Read Paper and Get Code
We present an algorithm for rapidly learning controllers for robotics systems. The algorithm follows the model-based reinforcement learning paradigm, and improves upon existing algorithms; namely Probabilistic learning in Control (PILCO) and a sample-based version of PILCO with neural network dynamics (Deep-PILCO). We propose training a neural network dynamics model using variational dropout with truncated Log-Normal noise. This allows us to obtain a dynamics model with calibrated uncertainty, which can be used to simulate controller executions via rollouts. We also describe set of techniques, inspired by viewing PILCO as a recurrent neural network model, that are crucial to improve the convergence of the method. We test our method on a variety of benchmark tasks, demonstrating data-efficiency that is competitive with PILCO, while being able to optimize complex neural network controllers. Finally, we assess the performance of the algorithm for learning motor controllers for a six legged autonomous underwater vehicle. This demonstrates the potential of the algorithm for scaling up the dimensionality and dataset sizes, in more complex control tasks.

* 8 pages, 7 figures
Click to Read Paper and Get Code
Policy gradient methods have had great success in solving continuous control tasks, yet the stochastic nature of such problems makes deterministic value estimation difficult. We propose an approach which instead estimates a distribution by fitting the value function with a Bayesian Neural Network. We optimize an $\alpha$-divergence objective with Bayesian dropout approximation to learn and estimate this distribution. We show that using the Monte Carlo posterior mean of the Bayesian value function distribution, rather than a deterministic network, improves stability and performance of policy gradient methods in continuous control MuJoCo simulations.

* Accepted to Bayesian Deep Learning Workshop at NIPS 2017
Click to Read Paper and Get Code
Mesh models are a promising approach for encoding the structure of 3D objects. Current mesh reconstruction systems predict uniformly distributed vertex locations of a predetermined graph through a series of graph convolutions, leading to compromises with respect to performance or resolution. In this paper, we argue that the graph representation of geometric objects allows for additional structure, which should be leveraged for enhanced reconstruction. Thus, we propose a system which properly benefits from the advantages of the geometric structure of graph encoded objects by introducing (1) a graph convolutional update preserving vertex information; (2) an adaptive splitting heuristic allowing detail to emerge; and (3) a training objective operating both on the local surfaces defined by vertices as well as the global structure defined by the mesh. Our proposed method is evaluated on the task of 3D object reconstruction from images with the ShapeNet dataset, where we demonstrate state of the art performance, both visually and numerically, while having far smaller space requirements by generating adaptive meshes

* 18 pages
Click to Read Paper and Get Code
In recent years, significant progress has been made in solving challenging problems across various domains using deep reinforcement learning (RL). Reproducing existing work and accurately judging the improvements offered by novel methods is vital to sustaining this progress. Unfortunately, reproducing results for state-of-the-art deep RL methods is seldom straightforward. In particular, non-determinism in standard benchmark environments, combined with variance intrinsic to the methods, can make reported results tough to interpret. Without significance metrics and tighter standardization of experimental reporting, it is difficult to determine whether improvements over the prior state-of-the-art are meaningful. In this paper, we investigate challenges posed by reproducibility, proper experimental techniques, and reporting procedures. We illustrate the variability in reported metrics and results when comparing against common baselines and suggest guidelines to make future results in deep RL more reproducible. We aim to spur discussion about how to ensure continued progress in the field by minimizing wasted effort stemming from results that are non-reproducible and easily misinterpreted.

* Accepted to the Thirthy-Second AAAI Conference On Artificial Intelligence (AAAI), 2018
Click to Read Paper and Get Code
Diversity of environments is a key challenge that causes learned robotic controllers to fail due to the discrepancies between the training and evaluation conditions. Training from demonstrations in various conditions can mitigate---but not completely prevent---such failures. Learned controllers such as neural networks typically do not have a notion of uncertainty that allows to diagnose an offset between training and testing conditions, and potentially intervene. In this work, we propose to use Bayesian Neural Networks, which have such a notion of uncertainty. We show that uncertainty can be leveraged to consistently detect situations in high-dimensional simulated and real robotic domains in which the performance of the learned controller would be sub-par. Also, we show that such an uncertainty based solution allows making an informed decision about when to invoke a fallback strategy. One fallback strategy is to request more data. We empirically show that providing data only when requested results in increased data-efficiency.

* Copyright 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Click to Read Paper and Get Code
As demand drives systems to generalize to various domains and problems, the study of multitask, transfer and lifelong learning has become an increasingly important pursuit. In discrete domains, performance on the Atari game suite has emerged as the de facto benchmark for assessing multitask learning. However, in continuous domains there is a lack of agreement on standard multitask evaluation environments which makes it difficult to compare different approaches fairly. In this work, we describe a benchmark set of tasks that we have developed in an extendable framework based on OpenAI Gym. We run a simple baseline using Trust Region Policy Optimization and release the framework publicly to be expanded and used for the systematic comparison of multitask, transfer, and lifelong learning in continuous domains.

* Accepted at Lifelong Learning: A Reinforcement Learning Approach Workshop @ ICML, Sydney, Australia, 2017
Click to Read Paper and Get Code
Reinforcement learning has shown promise in learning policies that can solve complex problems. However, manually specifying a good reward function can be difficult, especially for intricate tasks. Inverse reinforcement learning offers a useful paradigm to learn the underlying reward function directly from expert demonstrations. Yet in reality, the corpus of demonstrations may contain trajectories arising from a diverse set of underlying reward functions rather than a single one. Thus, in inverse reinforcement learning, it is useful to consider such a decomposition. The options framework in reinforcement learning is specifically designed to decompose policies in a similar light. We therefore extend the options framework and propose a method to simultaneously recover reward options in addition to policy options. We leverage adversarial methods to learn joint reward-policy options using only observed expert states. We show that this approach works well in both simple and complex continuous control tasks and shows significant performance increases in one-shot transfer learning.

* Accepted to the Thirthy-Second AAAI Conference On Artificial Intelligence (AAAI), 2018
Click to Read Paper and Get Code
The Semantic Robot Vision Competition provided an excellent opportunity for our research lab to integrate our many ideas under one umbrella, inspiring both collaboration and new research. The task, visual search for an unknown object, is relevant to both the vision and robotics communities. Moreover, since the interplay of robotics and vision is sometimes ignored, the competition provides a venue to integrate two communities. In this paper, we outline a number of modifications to the competition to both improve the state-of-the-art and increase participation.

* The IJCAI-09 Workshop on Competitions in Artificial Intelligence and Robotics, Pasadena, California, USA, July 11-17, 2009
Click to Read Paper and Get Code