Music summarization allows for higher efficiency in processing, storage, and sharing of datasets. Machine-oriented approaches, being agnostic to human consumption, optimize these aspects even further. Such summaries have already been successfully validated in some MIR tasks. We now generalize previous conclusions by evaluating the impact of generic summarization of music from a probabilistic perspective. We estimate Gaussian distributions for original and summarized songs and compute their relative entropy, in order to measure information loss incurred by summarization. Our results suggest that relative entropy is a good predictor of summarization performance in the context of tasks relying on a bag-of-features model. Based on this observation, we further propose a straightforward yet expressive summarizer, which minimizes relative entropy with respect to the original song, that objectively outperforms previous methods and is better suited to avoid potential copyright issues.

* 7 pages, 1 algorithm, 7 figures, 1 table, submitted to Pattern Recognition Letters (Elsevier)
Click to Read Paper
In order to satisfy processing time constraints, many MIR tasks process only a segment of the whole music signal. This practice may lead to decreasing performance, since the most important information for the tasks may not be in those processed segments. In this paper, we leverage generic summarization algorithms, previously applied to text and speech summarization, to summarize items in music datasets. These algorithms build summaries, that are both concise and diverse, by selecting appropriate segments from the input signal which makes them good candidates to summarize music as well. We evaluate the summarization process on binary and multiclass music genre classification tasks, by comparing the performance obtained using summarized datasets against the performances obtained using continuous segments (which is the traditional method used for addressing the previously mentioned time constraints) and full songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA, MMR, and a Support Sets-based Centrality model improve classification performance when compared to selected 30-second baselines. We also show that summarized datasets lead to a classification performance whose difference is not statistically significant from using full songs. Furthermore, we make an argument stating the advantages of sharing summarized datasets for future MIR research.

* IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 24, n. 6, March 2016
* 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing
Click to Read Paper
Several generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate this summarization's performance, we adopt an extrinsic approach: we compare a Fado Genre Classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on 2 different datasets. We show that Maximal Marginal Relevance (MMR), LexRank and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.

* IEEE Signal Processing Letters, IEEE, vol. 22, n. 1, January 2015
* 12 pages, 1 table; Submitted to IEEE Signal Processing Letters
Click to Read Paper
Our world can be succinctly and compactly described as structured scenes of objects and relations. A typical room, for example, contains salient objects such as tables, chairs and books, and these objects typically relate to each other by their underlying causes and semantics. This gives rise to correlated features, such as position, function and shape. Humans exploit knowledge of objects and their relations for learning a wide spectrum of tasks, and more generally when learning the structure underlying observed data. In this work, we introduce relation networks (RNs) - a general purpose neural network architecture for object-relation reasoning. We show that RNs are capable of learning object relations from scene description data. Furthermore, we show that RNs can act as a bottleneck that induces the factorization of objects from entangled scene description inputs, and from distributed deep representations of scene images provided by a variational autoencoder. The model can also be used in conjunction with differentiable memory mechanisms for implicit relation discovery in one-shot learning tasks. Our results suggest that relation networks are a potentially powerful architecture for solving a variety of problems that require object relation reasoning.

* ICLR Workshop 2017
Click to Read Paper
Modeling of music audio semantics has been previously tackled through learning of mappings from audio data to high-level tags or latent unsupervised spaces. The resulting semantic spaces are theoretically limited, either because the chosen high-level tags do not cover all of music semantics or because audio data itself is not enough to determine music semantics. In this paper, we propose a generic framework for semantics modeling that focuses on the perception of the listener, through EEG data, in addition to audio data. We implement this framework using a novel end-to-end 2-view Neural Network (NN) architecture and a Deep Canonical Correlation Analysis (DCCA) loss function that forces the semantic embedding spaces of both views to be maximally correlated. We also detail how the EEG dataset was collected and use it to train our proposed model. We evaluate the learned semantic space in a transfer learning context, by using it as an audio feature extractor in an independent dataset and proxy task: music audio-lyrics cross-modal retrieval. We show that our embedding model outperforms Spotify features and performs comparably to a state-of-the-art embedding model that was trained on 700 times more data. We further discuss improvements to the model that are likely to improve its performance.

* 5 pages, 2 figures
Click to Read Paper
We assess the performance of generic text summarization algorithms applied to films and documentaries, using the well-known behavior of summarization of news articles as reference. We use three datasets: (i) news articles, (ii) film scripts and subtitles, and (iii) documentary subtitles. Standard ROUGE metrics are used for comparing generated summaries against news abstracts, plot summaries, and synopses. We show that the best performing algorithms are LSA, for news articles and documentaries, and LexRank and Support Sets, for films. Despite the different nature of films and documentaries, their relative behavior is in accordance with that obtained for news articles.

* Pattern Recognition Letters, Volume 73, 1 April 2016, Pages 7-12
* 7 pages, 9 tables, 4 figures, submitted to Pattern Recognition Letters (Elsevier)
Click to Read Paper
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.

Click to Read Paper
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a \textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.

Click to Read Paper
Discovering and exploiting the causal structure in the environment is a crucial challenge for intelligent agents. Here we explore whether causal reasoning can emerge via meta-reinforcement learning. We train a recurrent network with model-free reinforcement learning to solve a range of problems that each contain causal structure. We find that the trained agent can perform causal reasoning in novel situations in order to obtain rewards. The agent can select informative interventions, draw causal inferences from observational data, and make counterfactual predictions. Although established formal causal reasoning algorithms also exist, in this paper we show that such reasoning can arise from model-free reinforcement learning, and suggest that causal reasoning in complex settings may benefit from the more end-to-end learning-based approaches presented here. This work also offers new strategies for structured exploration in reinforcement learning, by providing agents with the ability to perform -- and interpret -- experiments.

Click to Read Paper
We introduce hyperbolic attention networks to endow neural networks with enough capacity to match the complexity of data with hierarchical and power-law structure. A few recent approaches have successfully demonstrated the benefits of imposing hyperbolic geometry on the parameters of shallow networks. We extend this line of work by imposing hyperbolic geometry on the activations of neural networks. This allows us to exploit hyperbolic geometry to reason about embeddings produced by deep networks. We achieve this by re-expressing the ubiquitous mechanism of soft attention in terms of operations defined for hyperboloid and Klein models. Our method shows improvements in terms of generalization on neural machine translation, learning on graphs and visual question answering tasks while keeping the neural representations compact.

Click to Read Paper
The field of reinforcement learning (RL) is facing increasingly challenging domains with combinatorial complexity. For an RL agent to address these challenges, it is essential that it can plan effectively. Prior work has typically utilized an explicit model of the environment, combined with a specific planning algorithm (such as tree search). More recently, a new family of methods have been proposed that learn how to plan, by providing the structure for planning via an inductive bias in the function approximator (such as a tree structured neural network), trained end-to-end by a model-free RL algorithm. In this paper, we go even further, and demonstrate empirically that an entirely model-free approach, without special structure beyond standard neural network components such as convolutional networks and LSTMs, can learn to exhibit many of the characteristics typically associated with a model-based planner. We measure our agent's effectiveness at planning in terms of its ability to generalize across a combinatorial and irreversible state space, its data efficiency, and its ability to utilize additional thinking time. We find that our agent has many of the characteristics that one might expect to find in a planning algorithm. Furthermore, it exceeds the state-of-the-art in challenging combinatorial domains such as Sokoban and outperforms other model-free approaches that utilize strong inductive biases toward planning.

Click to Read Paper
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.

Click to Read Paper
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

Click to Read Paper