Crowdsourcing has become a primary means for label collection in many real-world machine learning applications. A classical method for inferring the true labels from the noisy labels provided by crowdsourcing workers is Dawid-Skene estimator. In this paper, we prove convergence rates of a projected EM algorithm for the Dawid-Skene estimator. The revealed exponent in the rate of convergence is shown to be optimal via a lower bound argument. Our work resolves the long standing issue of whether Dawid-Skene estimator has sound theoretical guarantees besides its good performance observed in practice. In addition, a comparative study with majority voting illustrates both advantages and pitfalls of the Dawid-Skene estimator. Click to Read Paper
Crowdsourcing has gained immense popularity in machine learning applications for obtaining large amounts of labeled data. Crowdsourcing is cheap and fast, but suffers from the problem of low-quality data. To address this fundamental challenge in crowdsourcing, we propose a simple payment mechanism to incentivize workers to answer only the questions that they are sure of and skip the rest. We show that surprisingly, under a mild and natural "no-free-lunch" requirement, this mechanism is the one and only incentive-compatible payment mechanism possible. We also show that among all possible incentive-compatible mechanisms (that may or may not satisfy no-free-lunch), our mechanism makes the smallest possible payment to spammers. We further extend our results to a more general setting in which workers are required to provide a quantized confidence for each question. Interestingly, this unique mechanism takes a "multiplicative" form. The simplicity of the mechanism is an added benefit. In preliminary experiments involving over 900 worker-task pairs, we observe a significant drop in the error rates under this unique mechanism for the same or lower monetary expenditure. Click to Read Paper
Human computation or crowdsourcing involves joint inference of the ground-truth-answers and the worker-abilities by optimizing an objective function, for instance, by maximizing the data likelihood based on an assumed underlying model. A variety of methods have been proposed in the literature to address this inference problem. As far as we know, none of the objective functions in existing methods is convex. In machine learning and applied statistics, a convex function such as the objective function of support vector machines (SVMs) is generally preferred, since it can leverage the high-performance algorithms and rigorous guarantees established in the extensive literature on convex optimization. One may thus wonder if there exists a meaningful convex objective function for the inference problem in human computation. In this paper, we investigate this convexity issue for human computation. We take an axiomatic approach by formulating a set of axioms that impose two mild and natural assumptions on the objective function for the inference. Under these axioms, we show that it is unfortunately impossible to ensure convexity of the inference problem. On the other hand, we show that interestingly, in the absence of a requirement to model "spammers", one can construct reasonable objective functions for crowdsourcing that guarantee convex inference. Click to Read Paper
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many applications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an $\tilde{O}(\sqrt{dT})$ regret over $T$ rounds with $d$ dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a $\sqrt{d}$ factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum-likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases. Click to Read Paper
In many machine learning applications, crowdsourcing has become the primary means for label collection. In this paper, we study the optimal error rate for aggregating labels provided by a set of non-expert workers. Under the classic Dawid-Skene model, we establish matching upper and lower bounds with an exact exponent $mI(\pi)$ in which $m$ is the number of workers and $I(\pi)$ the average Chernoff information that characterizes the workers' collective ability. Such an exact characterization of the error exponent allows us to state a precise sample size requirement $m>\frac{1}{I(\pi)}\log\frac{1}{\epsilon}$ in order to achieve an $\epsilon$ misclassification error. In addition, our results imply the optimality of various EM algorithms for crowdsourcing initialized by consistent estimators. Click to Read Paper
In crowd labeling, a large amount of unlabeled data instances are outsourced to a crowd of workers. Workers will be paid for each label they provide, but the labeling requester usually has only a limited amount of the budget. Since data instances have different levels of labeling difficulty and workers have different reliability, it is desirable to have an optimal policy to allocate the budget among all instance-worker pairs such that the overall labeling accuracy is maximized. We consider categorical labeling tasks and formulate the budget allocation problem as a Bayesian Markov decision process (MDP), which simultaneously conducts learning and decision making. Using the dynamic programming (DP) recurrence, one can obtain the optimal allocation policy. However, DP quickly becomes computationally intractable when the size of the problem increases. To solve this challenge, we propose a computationally efficient approximate policy, called optimistic knowledge gradient policy. Our MDP is a quite general framework, which applies to both pull crowdsourcing marketplaces with homogeneous workers and push marketplaces with heterogeneous workers. It can also incorporate the contextual information of instances when they are available. The experiments on both simulated and real data show that the proposed policy achieves a higher labeling accuracy than other existing policies at the same budget level. Click to Read Paper
Crowdsourcing is an effective tool for human-powered computation on many tasks challenging for computers. In this paper, we provide finite-sample exponential bounds on the error rate (in probability and in expectation) of hyperplane binary labeling rules under the Dawid-Skene crowdsourcing model. The bounds can be applied to analyze many common prediction methods, including the majority voting and weighted majority voting. These bound results could be useful for controlling the error rate and designing better algorithms. We show that the oracle Maximum A Posterior (MAP) rule approximately optimizes our upper bound on the mean error rate for any hyperplane binary labeling rule, and propose a simple data-driven weighted majority voting (WMV) rule (called one-step WMV) that attempts to approximate the oracle MAP and has a provable theoretical guarantee on the error rate. Moreover, we use simulated and real data to demonstrate that the data-driven EM-MAP rule is a good approximation to the oracle MAP rule, and to demonstrate that the mean error rate of the data-driven EM-MAP rule is also bounded by the mean error rate bound of the oracle MAP rule with estimated parameters plugging into the bound. Click to Read Paper
The growing need for labeled training data has made crowdsourcing an important part of machine learning. The quality of crowdsourced labels is, however, adversely affected by three factors: (1) the workers are not experts; (2) the incentives of the workers are not aligned with those of the requesters; and (3) the interface does not allow workers to convey their knowledge accurately, by forcing them to make a single choice among a set of options. In this paper, we address these issues by introducing approval voting to utilize the expertise of workers who have partial knowledge of the true answer, and coupling it with a ("strictly proper") incentive-compatible compensation mechanism. We show rigorous theoretical guarantees of optimality of our mechanism together with a simple axiomatic characterization. We also conduct preliminary empirical studies on Amazon Mechanical Turk which validate our approach. Click to Read Paper
We consider the off-policy estimation problem of estimating the expected reward of a target policy using samples collected by a different behavior policy. Importance sampling (IS) has been a key technique to derive (nearly) unbiased estimators, but is known to suffer from an excessively high variance in long-horizon problems. In the extreme case of in infinite-horizon problems, the variance of an IS-based estimator may even be unbounded. In this paper, we propose a new off-policy estimation method that applies IS directly on the stationary state-visitation distributions to avoid the exploding variance issue faced by existing estimators.Our key contribution is a novel approach to estimating the density ratio of two stationary distributions, with trajectories sampled from only the behavior distribution. We develop a mini-max loss function for the estimation problem, and derive a closed-form solution for the case of RKHS. We support our method with both theoretical and empirical analyses. Click to Read Paper
Crowdsourcing is a popular paradigm for effectively collecting labels at low cost. The Dawid-Skene estimator has been widely used for inferring the true labels from the noisy labels provided by non-expert crowdsourcing workers. However, since the estimator maximizes a non-convex log-likelihood function, it is hard to theoretically justify its performance. In this paper, we propose a two-stage efficient algorithm for multi-class crowd labeling problems. The first stage uses the spectral method to obtain an initial estimate of parameters. Then the second stage refines the estimation by optimizing the objective function of the Dawid-Skene estimator via the EM algorithm. We show that our algorithm achieves the optimal convergence rate up to a logarithmic factor. We conduct extensive experiments on synthetic and real datasets. Experimental results demonstrate that the proposed algorithm is comparable to the most accurate empirical approach, while outperforming several other recently proposed methods. Click to Read Paper
Generative adversarial training can be generally understood as minimizing certain moment matching loss defined by a set of discriminator functions, typically neural networks. The discriminator set should be large enough to be able to uniquely identify the true distribution (discriminative), and also be small enough to go beyond memorizing samples (generalizable). In this paper, we show that a discriminator set is guaranteed to be discriminative whenever its linear span is dense in the set of bounded continuous functions. This is a very mild condition satisfied even by neural networks with a single neuron. Further, we develop generalization bounds between the learned distribution and true distribution under different evaluation metrics. When evaluated with neural distance, our bounds show that generalization is guaranteed as long as the discriminator set is small enough, regardless of the size of the generator or hypothesis set. When evaluated with KL divergence, our bound provides an explanation on the counter-intuitive behaviors of testing likelihood in GAN training. Our analysis sheds lights on understanding the practical performance of GANs. Click to Read Paper
In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mitigate the monotonic alignment requirement of SWAN, we introduce a new layer to perform (soft) local reordering of input sequences. Different from existing neural machine translation (NMT) approaches, NPMT does not use attention-based decoding mechanisms. Instead, it directly outputs phrases in a sequential order and can decode in linear time. Our experiments show that NPMT achieves superior performances on IWSLT 2014 German-English/English-German and IWSLT 2015 English-Vietnamese machine translation tasks compared with strong NMT baselines. We also observe that our method produces meaningful phrases in output languages. Click to Read Paper
Policy gradient methods have achieved remarkable successes in solving challenging reinforcement learning problems. However, it still often suffers from the large variance issue on policy gradient estimation, which leads to poor sample efficiency during training. In this work, we propose a control variate method to effectively reduce variance for policy gradient methods. Motivated by the Stein's identity, our method extends the previous control variate methods used in REINFORCE and advantage actor-critic by introducing more general action-dependent baseline functions. Empirical studies show that our method significantly improves the sample efficiency of the state-of-the-art policy gradient approaches. Click to Read Paper
Policy evaluation is a crucial step in many reinforcement-learning procedures, which estimates a value function that predicts states' long-term value under a given policy. In this paper, we focus on policy evaluation with linear function approximation over a fixed dataset. We first transform the empirical policy evaluation problem into a (quadratic) convex-concave saddle point problem, and then present a primal-dual batch gradient method, as well as two stochastic variance reduction methods for solving the problem. These algorithms scale linearly in both sample size and feature dimension. Moreover, they achieve linear convergence even when the saddle-point problem has only strong concavity in the dual variables but no strong convexity in the primal variables. Numerical experiments on benchmark problems demonstrate the effectiveness of our methods. Click to Read Paper
Segmental structure is a common pattern in many types of sequences such as phrases in human languages. In this paper, we present a probabilistic model for sequences via their segmentations. The probability of a segmented sequence is calculated as the product of the probabilities of all its segments, where each segment is modeled using existing tools such as recurrent neural networks. Since the segmentation of a sequence is usually unknown in advance, we sum over all valid segmentations to obtain the final probability for the sequence. An efficient dynamic programming algorithm is developed for forward and backward computations without resorting to any approximation. We demonstrate our approach on text segmentation and speech recognition tasks. In addition to quantitative results, we also show that our approach can discover meaningful segments in their respective application contexts. Click to Read Paper
There is a rapidly increasing interest in crowdsourcing for data labeling. By crowdsourcing, a large number of labels can be often quickly gathered at low cost. However, the labels provided by the crowdsourcing workers are usually not of high quality. In this paper, we propose a minimax conditional entropy principle to infer ground truth from noisy crowdsourced labels. Under this principle, we derive a unique probabilistic labeling model jointly parameterized by worker ability and item difficulty. We also propose an objective measurement principle, and show that our method is the only method which satisfies this objective measurement principle. We validate our method through a variety of real crowdsourcing datasets with binary, multiclass or ordinal labels. Click to Read Paper
Recent years have seen the proposal of a number of neural architectures for the problem of Program Induction. Given a set of input-output examples, these architectures are able to learn mappings that generalize to new test inputs. While achieving impressive results, these approaches have a number of important limitations: (a) they are computationally expensive and hard to train, (b) a model has to be trained for each task (program) separately, and (c) it is hard to interpret or verify the correctness of the learnt mapping (as it is defined by a neural network). In this paper, we propose a novel technique, Neuro-Symbolic Program Synthesis, to overcome the above-mentioned problems. Once trained, our approach can automatically construct computer programs in a domain-specific language that are consistent with a set of input-output examples provided at test time. Our method is based on two novel neural modules. The first module, called the cross correlation I/O network, given a set of input-output examples, produces a continuous representation of the set of I/O examples. The second module, the Recursive-Reverse-Recursive Neural Network (R3NN), given the continuous representation of the examples, synthesizes a program by incrementally expanding partial programs. We demonstrate the effectiveness of our approach by applying it to the rich and complex domain of regular expression based string transformations. Experiments show that the R3NN model is not only able to construct programs from new input-output examples, but it is also able to construct new programs for tasks that it had never observed before during training. Click to Read Paper
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018). Furthermore, our method can naturally integrate with external phrase dictionaries during decoding. Empirical experiments show that our method achieves comparable performance with the state-of-the art methods on benchmark datasets. However, when the training and testing data are from different distributions or domains, our method performs better. Click to Read Paper