We propose an attentive neural network for the task of named entity recognition in Vietnamese. The proposed attentive neural model makes use of character-based language models and word embeddings to encode words as vector representations. A neural network architecture of encoder, attention, and decoder layers is then utilized to encode knowledge of input sentences and to label entity tags. The experimental results show that the proposed attentive neural network achieves the state-of-the-art results on the benchmark named entity recognition datasets in Vietnamese in comparison to both hand-crafted features based models and neural models.

Click to Read Paper
Autonomous indoor navigation of Micro Aerial Vehicles (MAVs) possesses many challenges. One main reason is that GPS has limited precision in indoor environments. The additional fact that MAVs are not able to carry heavy weight or power consuming sensors, such as range finders, makes indoor autonomous navigation a challenging task. In this paper, we propose a practical system in which a quadcopter autonomously navigates indoors and finds a specific target, i.e., a book bag, by using a single camera. A deep learning model, Convolutional Neural Network (ConvNet), is used to learn a controller strategy that mimics an expert pilot's choice of action. We show our system's performance through real-time experiments in diverse indoor locations. To understand more about our trained network, we use several visualization techniques.

Click to Read Paper
In this paper, a new adaptive noise reduction scheme for images corrupted by impulse noise is presented. The proposed scheme efficiently identifies and reduces salt and pepper noise. MAG (Mean Absolute Gradient) is used to identify pixels which are most likely corrupted by salt and pepper noise that are candidates for further median based noise reduction processing. Directional filtering is then applied after noise reduction to achieve a good tradeoff between detail preservation and noise removal. The proposed scheme can remove salt and pepper noise with noise density as high as 90% and produce better result in terms of qualitative and quantitative measures of images.

* 9 pages, 5 figures
Click to Read Paper
We propose a vision-based method that localizes a ground vehicle using publicly available satellite imagery as the only prior knowledge of the environment. Our approach takes as input a sequence of ground-level images acquired by the vehicle as it navigates, and outputs an estimate of the vehicle's pose relative to a georeferenced satellite image. We overcome the significant viewpoint and appearance variations between the images through a neural multi-view model that learns location-discriminative embeddings in which ground-level images are matched with their corresponding satellite view of the scene. We use this learned function as an observation model in a filtering framework to maintain a distribution over the vehicle's pose. We evaluate our method on different benchmark datasets and demonstrate its ability localize ground-level images in environments novel relative to training, despite the challenges of significant viewpoint and appearance variations.

* To be published in IEEE International Conference on Robotics and Automation (ICRA), 2017
Click to Read Paper
We present a baseline convolutional neural network (CNN) structure and image preprocessing methodology to improve facial expression recognition algorithm using CNN. To analyze the most efficient network structure, we investigated four network structures that are known to show good performance in facial expression recognition. Moreover, we also investigated the effect of input image preprocessing methods. Five types of data input (raw, histogram equalization, isotropic smoothing, diffusion-based normalization, difference of Gaussian) were tested, and the accuracy was compared. We trained 20 different CNN models (4 networks x 5 data input types) and verified the performance of each network with test images from five different databases. The experiment result showed that a three-layer structure consisting of a simple convolutional and a max pooling layer with histogram equalization image input was the most efficient. We describe the detailed training procedure and analyze the result of the test accuracy based on considerable observation.

* 6 pages, RO-MAN2016 Conference
Click to Read Paper
Using neural networks in practical settings would benefit from the ability of the networks to learn new tasks throughout their lifetimes without forgetting the previous tasks. This ability is limited in the current deep neural networks by a problem called catastrophic forgetting, where training on new tasks tends to severely degrade performance on previous tasks. One way to lessen the impact of the forgetting problem is to constrain parameters that are important to previous tasks to stay close to the optimal parameters. Recently, multiple competitive approaches for computing the importance of the parameters with respect to the previous tasks have been presented. In this paper, we propose a learning to optimize algorithm for mitigating catastrophic forgetting. Instead of trying to formulate a new constraint function ourselves, we propose to train another neural network to predict parameter update steps that respect the importance of parameters to the previous tasks. In the proposed meta-training scheme, the update predictor is trained to minimize loss on a combination of current and past tasks. We show experimentally that the proposed approach works in the continual learning setting.

Click to Read Paper
This paper presents the Crossmodal Attentive Skill Learner (CASL), integrated with the recently-introduced Asynchronous Advantage Option-Critic (A2OC) architecture [Harb et al., 2017] to enable hierarchical reinforcement learning across multiple sensory inputs. We provide concrete examples where the approach not only improves performance in a single task, but accelerates transfer to new tasks. We demonstrate the attention mechanism anticipates and identifies useful latent features, while filtering irrelevant sensor modalities during execution. We modify the Arcade Learning Environment [Bellemare et al., 2013] to support audio queries, and conduct evaluations of crossmodal learning in the Atari 2600 game Amidar. Finally, building on the recent work of Babaeizadeh et al. [2017], we open-source a fast hybrid CPU-GPU implementation of CASL.

* International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2018, NIPS 2017 Deep Reinforcement Learning Symposium
Click to Read Paper
We present a technique which complements Hidden Markov Models by incorporating some lexicalized states representing syntactically uncommon words. Our approach examines the distribution of transitions, selects the uncommon words, and makes lexicalized states for the words. We performed a part-of-speech tagging experiment on the Brown corpus to evaluate the resultant language model and discovered that this technique improved the tagging accuracy by 0.21% at the 95% level of confidence.

* Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp.121-127, 1999
* 7 pages, 6 figures
Click to Read Paper
Although deep convolutional networks have achieved improved performance in many natural language tasks, they have been treated as black boxes because they are difficult to interpret. Especially, little is known about how they represent language in their intermediate layers. In an attempt to understand the representations of deep convolutional networks trained on language tasks, we show that individual units are selectively responsive to specific morphemes, words, and phrases, rather than responding to arbitrary and uninterpretable patterns. In order to quantitatively analyze such an intriguing phenomenon, we propose a concept alignment method based on how units respond to the replicated text. We conduct analyses with different architectures on multiple datasets for classification and translation tasks and provide new insights into how deep models understand natural language.

* Published as a conference paper at ICLR 2019
Click to Read Paper
Computer aided diagnostic (CAD) system is crucial for modern med-ical imaging. But almost all CAD systems operate on reconstructed images, which were optimized for radiologists. Computer vision can capture features that is subtle to human observers, so it is desirable to design a CAD system op-erating on the raw data. In this paper, we proposed a deep-neural-network-based detection system for lung nodule detection in computed tomography (CT). A primal-dual-type deep reconstruction network was applied first to convert the raw data to the image space, followed by a 3-dimensional convolutional neural network (3D-CNN) for the nodule detection. For efficient network training, the deep reconstruction network and the CNN detector was trained sequentially first, then followed by one epoch of end-to-end fine tuning. The method was evaluated on the Lung Image Database Consortium image collection (LIDC-IDRI) with simulated forward projections. With 144 multi-slice fanbeam pro-jections, the proposed end-to-end detector could achieve comparable sensitivity with the reference detector, which was trained and applied on the fully-sampled image data. It also demonstrated superior detection performance compared to detectors trained on the reconstructed images. The proposed method is general and could be expanded to most detection tasks in medical imaging.

* published at MLMI 2018
Click to Read Paper
Systematic benchmark evaluation plays an important role in the process of improving technologies for Question Answering (QA) systems. While currently there are a number of existing evaluation methods for natural language (NL) QA systems, most of them consider only the final answers, limiting their utility within a black box style evaluation. Herein, we propose a subdivided evaluation approach to enable finer-grained evaluation of QA systems, and present an evaluation tool which targets the NL question (NLQ) interpretation step, an initial step of a QA pipeline. The results of experiments using two public benchmark datasets suggest that we can get a deeper insight about the performance of a QA system using the proposed approach, which should provide a better guidance for improving the systems, than using black box style approaches.

* 16 pages, 6 figures, JIST 2018
Click to Read Paper
Human behavior understanding is arguably one of the most important mid-level components in artificial intelligence. In order to efficiently make use of data, multi-task learning has been studied in diverse computer vision tasks including human behavior understanding. However, multi-task learning relies on task specific datasets and constructing such datasets can be cumbersome. It requires huge amounts of data, labeling efforts, statistical consideration etc. In this paper, we leverage existing single-task datasets for human action classification and captioning data for efficient human behavior learning. Since the data in each dataset has respective heterogeneous annotations, traditional multi-task learning is not effective in this scenario. To this end, we propose a novel alternating directional optimization method to efficiently learn from the heterogeneous data. We demonstrate the effectiveness of our model and show performance improvements on both classification and sentence retrieval tasks in comparison to the models trained on each of the single-task datasets.

* 10 pages, 7 figures
Click to Read Paper
In an RF-powered backscatter cognitive radio network, multiple secondary users communicate with a secondary gateway by backscattering or harvesting energy and actively transmitting their data depending on the primary channel state. To coordinate the transmission of multiple secondary transmitters, the secondary gateway needs to schedule the backscattering time, energy harvesting time, and transmission time among them. However, under the dynamics of the primary channel and the uncertainty of the energy state of the secondary transmitters, it is challenging for the gateway to find a time scheduling mechanism which maximizes the total throughput. In this paper, we propose to use the deep reinforcement learning algorithm to derive an optimal time scheduling policy for the gateway. Specifically, to deal with the problem with large state and action spaces, we adopt a Double Deep-Q Network (DDQN) that enables the gateway to learn the optimal policy. The simulation results clearly show that the proposed deep reinforcement learning algorithm outperforms non-learning schemes in terms of network throughput.

Click to Read Paper
Detecting the edges of objects within images is critical for quality image processing. We present an edge-detecting technique that uses morphological amoebas that adjust their shape based on variation in image contours. We evaluate the method both quantitatively and qualitatively for edge detection of images, and compare it to classic morphological methods. Our amoeba-based edge-detection system performed better than the classic edge detectors.

* To appear in The Imaging Science Journal
Click to Read Paper
The scientific and technological revolution of the Internet of Things has begun in the area of oceanography. Historically, humans have observed the ocean from an external viewpoint in order to study it. In recent years, however, changes have occurred in the ocean, and laboratories have been built on the seafloor. Approximately 70.8% of the Earth's surface is covered by oceans and rivers. The Ocean of Things is expected to be important for disaster prevention, ocean-resource exploration, and underwater environmental monitoring. Unlike traditional wireless sensor networks, the Ocean Network has its own unique features, such as low reliability and narrow bandwidth. These features will be great challenges for the Ocean Network. Furthermore, the integration of the Ocean Network with artificial intelligence has become a topic of increasing interest for oceanology researchers. The Cognitive Ocean Network (CONet) will become the mainstream of future ocean science and engineering developments. In this article, we define the CONet. The contributions of the paper are as follows: (1) a CONet architecture is proposed and described in detail; (2) important and useful demonstration applications of the CONet are proposed; and (3) future trends in CONet research are presented.

* Accepted by IEEE Wireless Communications
Click to Read Paper
This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.

* 37 pages, 13 figures, 6 tables, 174 reference papers
Click to Read Paper
Collective human knowledge has clearly benefited from the fact that innovations by individuals are taught to others through communication. Similar to human social groups, agents in distributed learning systems would likely benefit from communication to share knowledge and teach skills. The problem of teaching to improve agent learning has been investigated by prior works, but these approaches make assumptions that prevent application of teaching to general multiagent problems, or require domain expertise for problems they can apply to. This learning to teach problem has inherent complexities related to measuring long-term impacts of teaching that compound the standard multiagent coordination challenges. In contrast to existing works, this paper presents the first general framework and algorithm for intelligent agents to learn to teach in a multiagent environment. Our algorithm, Learning to Coordinate and Teach Reinforcement (LeCTR), addresses peer-to-peer teaching in cooperative multiagent reinforcement learning. Each agent in our approach learns both when and what to advise, then uses the received advice to improve local learning. Importantly, these roles are not fixed; these agents learn to assume the role of student and/or teacher at the appropriate moments, requesting and providing advice in order to improve teamwide performance and learning. Empirical comparisons against state-of-the-art teaching methods show that our teaching agents not only learn significantly faster, but also learn to coordinate in tasks where existing methods fail.

Click to Read Paper
Deep neural networks continue to advance the state-of-the-art of image recognition tasks with various methods. However, applications of these methods to multimodality remain limited. We present Multimodal Residual Networks (MRN) for the multimodal residual learning of visual question-answering, which extends the idea of the deep residual learning. Unlike the deep residual learning, MRN effectively learns the joint representation from vision and language information. The main idea is to use element-wise multiplication for the joint residual mappings exploiting the residual learning of the attentional models in recent studies. Various alternative models introduced by multimodality are explored based on our study. We achieve the state-of-the-art results on the Visual QA dataset for both Open-Ended and Multiple-Choice tasks. Moreover, we introduce a novel method to visualize the attention effect of the joint representations for each learning block using back-propagation algorithm, even though the visual features are collapsed without spatial information.

* 13 pages, 7 figures, accepted for NIPS 2016
Click to Read Paper
This paper reviews the first challenge on efficient perceptual image enhancement with the focus on deploying deep learning models on smartphones. The challenge consisted of two tracks. In the first one, participants were solving the classical image super-resolution problem with a bicubic downscaling factor of 4. The second track was aimed at real-world photo enhancement, and the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with a DSLR camera. The target metric used in this challenge combined the runtime, PSNR scores and solutions' perceptual results measured in the user study. To ensure the efficiency of the submitted models, we additionally measured their runtime and memory requirements on Android smartphones. The proposed solutions significantly improved baseline results defining the state-of-the-art for image enhancement on smartphones.

Click to Read Paper
Knowledge base is the way to store structured and unstructured data throughout the web. Since the size of the web is increasing rapidly, there are huge needs to structure the knowledge in a fully automated way. However fully-automated knowledge-base evolution on the Semantic Web is a major challenges, although there are many ontology evolution techniques available. Therefore learning ontology automatically can contribute to the semantic web society significantly. In this paper, we propose full-automated ontology learning algorithm to generate refined knowledge base from incomplete knowledge base and rdf-triples. Our algorithm is data-driven approach which is based on the property of each instance. Ontology class is being elaborated by generalizing frequent property of its instances. By using that developed class information, each instance can find its most relatively matching class. By repeating these two steps, we achieve fully-automated ontology evolution from incomplete basic knowledge base.

* 11 pages, submitted to International Semantic Web Conference 2014 (Rejected), Revising(2016-04-04~)
Click to Read Paper