Real-time strategy games have been an important field of game artificial intelligence in recent years. This paper presents a reinforcement learning and curriculum transfer learning method to control multiple units in StarCraft micromanagement. We define an efficient state representation, which breaks down the complexity caused by the large state space in the game environment. Then a parameter sharing multi-agent gradientdescent Sarsa({\lambda}) (PS-MAGDS) algorithm is proposed to train the units. The learning policy is shared among our units to encourage cooperative behaviors. We use a neural network as a function approximator to estimate the action-value function, and propose a reward function to help units balance their move and attack. In addition, a transfer learning method is used to extend our model to more difficult scenarios, which accelerates the training process and improves the learning performance. In small scale scenarios, our units successfully learn to combat and defeat the built-in AI with 100% win rates. In large scale scenarios, curriculum transfer learning method is used to progressively train a group of units, and shows superior performance over some baseline methods in target scenarios. With reinforcement learning and curriculum transfer learning, our units are able to learn appropriate strategies in StarCraft micromanagement scenarios.

* 12 pages, 14 figures, accepted to IEEE Transactions on Emerging Topics in Computational Intelligence
Click to Read Paper
This paper investigates the vision-based autonomous driving with deep learning and reinforcement learning methods. Different from the end-to-end learning method, our method breaks the vision-based lateral control system down into a perception module and a control module. The perception module which is based on a multi-task learning neural network first takes a driver-view image as its input and predicts the track features. The control module which is based on reinforcement learning then makes a control decision based on these features. In order to improve the data efficiency, we propose visual TORCS (VTORCS), a deep reinforcement learning environment which is based on the open racing car simulator (TORCS). By means of the provided functions, one can train an agent with the input of an image or various physical sensor measurement, or evaluate the perception algorithm on this simulator. The trained reinforcement learning controller outperforms the linear quadratic regulator (LQR) controller and model predictive control (MPC) controller on different tracks. The experiments demonstrate that the perception module shows promising performance and the controller is capable of controlling the vehicle drive well along the track center with visual input.

* 14 pages, 12 figures, accepted to IEEE Computational Intelligence Magazine
Click to Read Paper