Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

Feb 22, 2013

Matteo Riondato, Eli Upfal

Feb 22, 2013

Matteo Riondato, Eli Upfal

**Click to Read Paper**

A Clustering Approach to Solving Large Stochastic Matching Problems

Jan 10, 2013

Milos Hauskrecht, Eli Upfal

Jan 10, 2013

Milos Hauskrecht, Eli Upfal

**Click to Read Paper**

**Click to Read Paper**

In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit algorithms with a small finite strategy set is quite well understood, bandit problems with large strategy sets are still a topic of very active investigation, motivated by practical applications such as online auctions and web advertisement. The goal of such research is to identify broad and natural classes of strategy sets and payoff functions which enable the design of efficient solutions. In this work we study a very general setting for the multi-armed bandit problem in which the strategies form a metric space, and the payoff function satisfies a Lipschitz condition with respect to the metric. We refer to this problem as the "Lipschitz MAB problem". We present a complete solution for the multi-armed problem in this setting. That is, for every metric space (L,X) we define an isometry invariant which bounds from below the performance of Lipschitz MAB algorithms for X, and we present an algorithm which comes arbitrarily close to meeting this bound. Furthermore, our technique gives even better results for benign payoff functions.

**Click to Read Paper**
Optimizing Static and Adaptive Probing Schedules for Rapid Event Detection

Sep 10, 2015

Ahmad Mahmoody, Evgenios M. Kornaropoulos, Eli Upfal

We formulate and study a fundamental search and detection problem, Schedule Optimization, motivated by a variety of real-world applications, ranging from monitoring content changes on the web, social networks, and user activities to detecting failure on large systems with many individual machines. We consider a large system consists of many nodes, where each node has its own rate of generating new events, or items. A monitoring application can probe a small number of nodes at each step, and our goal is to compute a probing schedule that minimizes the expected number of undiscovered items at the system, or equivalently, minimizes the expected time to discover a new item in the system. We study the Schedule Optimization problem both for deterministic and randomized memoryless algorithms. We provide lower bounds on the cost of an optimal schedule and construct close to optimal schedules with rigorous mathematical guarantees. Finally, we present an adaptive algorithm that starts with no prior information on the system and converges to the optimal memoryless algorithms by adapting to observed data.
Sep 10, 2015

Ahmad Mahmoody, Evgenios M. Kornaropoulos, Eli Upfal

**Click to Read Paper**

Unknown Examples & Machine Learning Model Generalization

Aug 24, 2018

Yeounoh Chung, Peter J. Haas, Eli Upfal, Tim Kraska

Aug 24, 2018

Yeounoh Chung, Peter J. Haas, Eli Upfal, Tim Kraska

**Click to Read Paper**

The VC-Dimension of Queries and Selectivity Estimation Through Sampling

Aug 11, 2011

Matteo Riondato, Mert Akdere, Ugur Cetintemel, Stanley B. Zdonik, Eli Upfal

Aug 11, 2011

Matteo Riondato, Mert Akdere, Ugur Cetintemel, Stanley B. Zdonik, Eli Upfal

**Click to Read Paper**

Machine Learning in High Energy Physics Community White Paper

Jul 08, 2018

Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

Jul 08, 2018

Kim Albertsson, Piero Altoe, Dustin Anderson, Michael Andrews, Juan Pedro Araque Espinosa, Adam Aurisano, Laurent Basara, Adrian Bevan, Wahid Bhimji, Daniele Bonacorsi, Paolo Calafiura, Mario Campanelli, Louis Capps, Federico Carminati, Stefano Carrazza, Taylor Childers, Elias Coniavitis, Kyle Cranmer, Claire David, Douglas Davis, Javier Duarte, Martin Erdmann, Jonas Eschle, Amir Farbin, Matthew Feickert, Nuno Filipe Castro, Conor Fitzpatrick, Michele Floris, Alessandra Forti, Jordi Garra-Tico, Jochen Gemmler, Maria Girone, Paul Glaysher, Sergei Gleyzer, Vladimir Gligorov, Tobias Golling, Jonas Graw, Lindsey Gray, Dick Greenwood, Thomas Hacker, John Harvey, Benedikt Hegner, Lukas Heinrich, Ben Hooberman, Johannes Junggeburth, Michael Kagan, Meghan Kane, Konstantin Kanishchev, Przemysław Karpiński, Zahari Kassabov, Gaurav Kaul, Dorian Kcira, Thomas Keck, Alexei Klimentov, Jim Kowalkowski, Luke Kreczko, Alexander Kurepin, Rob Kutschke, Valentin Kuznetsov, Nicolas Köhler, Igor Lakomov, Kevin Lannon, Mario Lassnig, Antonio Limosani, Gilles Louppe, Aashrita Mangu, Pere Mato, Narain Meenakshi, Helge Meinhard, Dario Menasce, Lorenzo Moneta, Seth Moortgat, Mark Neubauer, Harvey Newman, Hans Pabst, Michela Paganini, Manfred Paulini, Gabriel Perdue, Uzziel Perez, Attilio Picazio, Jim Pivarski, Harrison Prosper, Fernanda Psihas, Alexander Radovic, Ryan Reece, Aurelius Rinkevicius, Eduardo Rodrigues, Jamal Rorie, David Rousseau, Aaron Sauers, Steven Schramm, Ariel Schwartzman, Horst Severini, Paul Seyfert, Filip Siroky, Konstantin Skazytkin, Mike Sokoloff, Graeme Stewart, Bob Stienen, Ian Stockdale, Giles Strong, Savannah Thais, Karen Tomko, Eli Upfal, Emanuele Usai, Andrey Ustyuzhanin, Martin Vala, Sofia Vallecorsa, Mauro Verzetti, Xavier Vilasís-Cardona, Jean-Roch Vlimant, Ilija Vukotic, Sean-Jiun Wang, Gordon Watts, Michael Williams, Wenjing Wu, Stefan Wunsch, Omar Zapata

**Click to Read Paper**

Instance-Optimality in the Noisy Value-and Comparison-Model --- Accept, Accept, Strong Accept: Which Papers get in?

Nov 05, 2018

Vincent Cohen-Addad, Frederik Mallmann-Trenn, Claire Mathieu

Nov 05, 2018

Vincent Cohen-Addad, Frederik Mallmann-Trenn, Claire Mathieu

**Click to Read Paper**