Models, code, and papers for "Erik Rodner":

Visual Transfer Learning: Informal Introduction and Literature Overview

Nov 06, 2012
Erik Rodner

Transfer learning techniques are important to handle small training sets and to allow for quick generalization even from only a few examples. The following paper is the introduction as well as the literature overview part of my thesis related to the topic of transfer learning for visual recognition problems.

* part of my PhD thesis 

  Click for Model/Code and Paper
Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks

Dec 05, 2015
Marcel Simon, Erik Rodner

Part models of object categories are essential for challenging recognition tasks, where differences in categories are subtle and only reflected in appearances of small parts of the object. We present an approach that is able to learn part models in a completely unsupervised manner, without part annotations and even without given bounding boxes during learning. The key idea is to find constellations of neural activation patterns computed using convolutional neural networks. In our experiments, we outperform existing approaches for fine-grained recognition on the CUB200-2011, NA birds, Oxford PETS, and Oxford Flowers dataset in case no part or bounding box annotations are available and achieve state-of-the-art performance for the Stanford Dog dataset. We also show the benefits of neural constellation models as a data augmentation technique for fine-tuning. Furthermore, our paper unites the areas of generic and fine-grained classification, since our approach is suitable for both scenarios. The source code of our method is available online at

* Published at IEEE International Conference on Computer Vision (ICCV) 2015 

  Click for Model/Code and Paper
ImageNet pre-trained models with batch normalization

Dec 06, 2016
Marcel Simon, Erik Rodner, Joachim Denzler

Convolutional neural networks (CNN) pre-trained on ImageNet are the backbone of most state-of-the-art approaches. In this paper, we present a new set of pre-trained models with popular state-of-the-art architectures for the Caffe framework. The first release includes Residual Networks (ResNets) with generation script as well as the batch-normalization-variants of AlexNet and VGG19. All models outperform previous models with the same architecture. The models and training code are available at and

  Click for Model/Code and Paper
Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets

Oct 10, 2016
Manuel Amthor, Erik Rodner, Joachim Denzler

We propose Impatient Deep Neural Networks (DNNs) which deal with dynamic time budgets during application. They allow for individual budgets given a priori for each test example and for anytime prediction, i.e., a possible interruption at multiple stages during inference while still providing output estimates. Our approach can therefore tackle the computational costs and energy demands of DNNs in an adaptive manner, a property essential for real-time applications. Our Impatient DNNs are based on a new general framework of learning dynamic budget predictors using risk minimization, which can be applied to current DNN architectures by adding early prediction and additional loss layers. A key aspect of our method is that all of the intermediate predictors are learned jointly. In experiments, we evaluate our approach for different budget distributions, architectures, and datasets. Our results show a significant gain in expected accuracy compared to common baselines.

* British Machine Vision Conference (BMVC) 2016 

  Click for Model/Code and Paper
Part Detector Discovery in Deep Convolutional Neural Networks

Nov 14, 2014
Marcel Simon, Erik Rodner, Joachim Denzler

Current fine-grained classification approaches often rely on a robust localization of object parts to extract localized feature representations suitable for discrimination. However, part localization is a challenging task due to the large variation of appearance and pose. In this paper, we show how pre-trained convolutional neural networks can be used for robust and efficient object part discovery and localization without the necessity to actually train the network on the current dataset. Our approach called "part detector discovery" (PDD) is based on analyzing the gradient maps of the network outputs and finding activation centers spatially related to annotated semantic parts or bounding boxes. This allows us not just to obtain excellent performance on the CUB200-2011 dataset, but in contrast to previous approaches also to perform detection and bird classification jointly without requiring a given bounding box annotation during testing and ground-truth parts during training. The code is available at and

* Accepted for publication on Asian Conference on Computer Vision (ACCV) 2014 

  Click for Model/Code and Paper
ARTOS -- Adaptive Real-Time Object Detection System

Aug 25, 2014
Björn Barz, Erik Rodner, Joachim Denzler

ARTOS is all about creating, tuning, and applying object detection models with just a few clicks. In particular, ARTOS facilitates learning of models for visual object detection by eliminating the burden of having to collect and annotate a large set of positive and negative samples manually and in addition it implements a fast learning technique to reduce the time needed for the learning step. A clean and friendly GUI guides the user through the process of model creation, adaptation of learned models to different domains using in-situ images, and object detection on both offline images and images from a video stream. A library written in C++ provides the main functionality of ARTOS with a C-style procedural interface, so that it can be easily integrated with any other project.


  Click for Model/Code and Paper
Fast Learning and Prediction for Object Detection using Whitened CNN Features

Apr 12, 2017
Björn Barz, Erik Rodner, Christoph Käding, Joachim Denzler

We combine features extracted from pre-trained convolutional neural networks (CNNs) with the fast, linear Exemplar-LDA classifier to get the advantages of both: the high detection performance of CNNs, automatic feature engineering, fast model learning from few training samples and efficient sliding-window detection. The Adaptive Real-Time Object Detection System (ARTOS) has been refactored broadly to be used in combination with Caffe for the experimental studies reported in this work.

* Technical Report about the possibilities introduced with ARTOS v2, originally created March 2016 

  Click for Model/Code and Paper
Active and Continuous Exploration with Deep Neural Networks and Expected Model Output Changes

Dec 19, 2016
Christoph Käding, Erik Rodner, Alexander Freytag, Joachim Denzler

The demands on visual recognition systems do not end with the complexity offered by current large-scale image datasets, such as ImageNet. In consequence, we need curious and continuously learning algorithms that actively acquire knowledge about semantic concepts which are present in available unlabeled data. As a step towards this goal, we show how to perform continuous active learning and exploration, where an algorithm actively selects relevant batches of unlabeled examples for annotation. These examples could either belong to already known or to yet undiscovered classes. Our algorithm is based on a new generalization of the Expected Model Output Change principle for deep architectures and is especially tailored to deep neural networks. Furthermore, we show easy-to-implement approximations that yield efficient techniques for active selection. Empirical experiments show that our method outperforms currently used heuristics.

* accepted contribution at NIPS 2016 Workshop on Continual Learning and Deep Networks 

  Click for Model/Code and Paper
Fine-grained Categorization -- Short Summary of our Entry for the ImageNet Challenge 2012

Oct 17, 2013
Christoph Göring, Alexander Freytag, Erik Rodner, Joachim Denzler

In this paper, we tackle the problem of visual categorization of dog breeds, which is a surprisingly challenging task due to simultaneously present low interclass distances and high intra-class variances. Our approach combines several techniques well known in our community but often not utilized for fine-grained recognition: (1) automatic segmentation, (2) efficient part detection, and (3) combination of multiple features. In particular, we demonstrate that a simple head detector embedded in an off-the-shelf recognition pipeline can improve recognition accuracy quite significantly, highlighting the importance of part features for fine-grained recognition tasks. Using our approach, we achieved a 24.59% mean average precision performance on the Stanford dog dataset.

  Click for Model/Code and Paper
Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection

Apr 19, 2018
Björn Barz, Erik Rodner, Yanira Guanche Garcia, Joachim Denzler

Automatic detection of anomalies in space- and time-varying measurements is an important tool in several fields, e.g., fraud detection, climate analysis, or healthcare monitoring. We present an algorithm for detecting anomalous regions in multivariate spatio-temporal time-series, which allows for spotting the interesting parts in large amounts of data, including video and text data. In opposition to existing techniques for detecting isolated anomalous data points, we propose the "Maximally Divergent Intervals" (MDI) framework for unsupervised detection of coherent spatial regions and time intervals characterized by a high Kullback-Leibler divergence compared with all other data given. In this regard, we define an unbiased Kullback-Leibler divergence that allows for ranking regions of different size and show how to enable the algorithm to run on large-scale data sets in reasonable time using an interval proposal technique. Experiments on both synthetic and real data from various domains, such as climate analysis, video surveillance, and text forensics, demonstrate that our method is widely applicable and a valuable tool for finding interesting events in different types of data.

* Accepted by TPAMI. Examples and code: 

  Click for Model/Code and Paper
Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches

Oct 21, 2016
Erik Rodner, Marcel Simon, Robert B. Fisher, Joachim Denzler

In this paper, we study the sensitivity of CNN outputs with respect to image transformations and noise in the area of fine-grained recognition. In particular, we answer the following questions (1) how sensitive are CNNs with respect to image transformations encountered during wild image capture?; (2) how can we predict CNN sensitivity?; and (3) can we increase the robustness of CNNs with respect to image degradations? To answer the first question, we provide an extensive empirical sensitivity analysis of commonly used CNN architectures (AlexNet, VGG19, GoogleNet) across various types of image degradations. This allows for predicting CNN performance for new domains comprised by images of lower quality or captured from a different viewpoint. We also show how the sensitivity of CNN outputs can be predicted for single images. Furthermore, we demonstrate that input layer dropout or pre-filtering during test time only reduces CNN sensitivity for high levels of degradation. Experiments for fine-grained recognition tasks reveal that VGG19 is more robust to severe image degradations than AlexNet and GoogleNet. However, small intensity noise can lead to dramatic changes in CNN performance even for VGG19.

* BMVC 2016 Paper 

  Click for Model/Code and Paper
Generalized orderless pooling performs implicit salient matching

Jul 20, 2017
Marcel Simon, Yang Gao, Trevor Darrell, Joachim Denzler, Erik Rodner

Most recent CNN architectures use average pooling as a final feature encoding step. In the field of fine-grained recognition, however, recent global representations like bilinear pooling offer improved performance. In this paper, we generalize average and bilinear pooling to "alpha-pooling", allowing for learning the pooling strategy during training. In addition, we present a novel way to visualize decisions made by these approaches. We identify parts of training images having the highest influence on the prediction of a given test image. It allows for justifying decisions to users and also for analyzing the influence of semantic parts. For example, we can show that the higher capacity VGG16 model focuses much more on the bird's head than, e.g., the lower-capacity VGG-M model when recognizing fine-grained bird categories. Both contributions allow us to analyze the difference when moving between average and bilinear pooling. In addition, experiments show that our generalized approach can outperform both across a variety of standard datasets.

* Published at International Conference on Computer Vision (ICCV) 2017 

  Click for Model/Code and Paper
Seeing through bag-of-visual-word glasses: towards understanding quantization effects in feature extraction methods

Aug 20, 2014
Alexander Freytag, Johannes Rühle, Paul Bodesheim, Erik Rodner, Joachim Denzler

Vector-quantized local features frequently used in bag-of-visual-words approaches are the backbone of popular visual recognition systems due to both their simplicity and their performance. Despite their success, bag-of-words-histograms basically contain low-level image statistics (e.g., number of edges of different orientations). The question remains how much visual information is "lost in quantization" when mapping visual features to code words? To answer this question, we present an in-depth analysis of the effect of local feature quantization on human recognition performance. Our analysis is based on recovering the visual information by inverting quantized local features and presenting these visualizations with different codebook sizes to human observers. Although feature inversion techniques are around for quite a while, to the best of our knowledge, our technique is the first visualizing especially the effect of feature quantization. Thereby, we are now able to compare single steps in common image classification pipelines to human counterparts.

* An abstract version of this paper was accepted for the ICPR FEAST Workshop 

  Click for Model/Code and Paper
Towards Adapting ImageNet to Reality: Scalable Domain Adaptation with Implicit Low-rank Transformations

Aug 20, 2013
Erik Rodner, Judy Hoffman, Jeff Donahue, Trevor Darrell, Kate Saenko

Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of the major barriers for the application of classifiers in real-world systems. In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scale internet image collections and object images captured in everyday life environments.

  Click for Model/Code and Paper
Efficient Learning of Domain-invariant Image Representations

Apr 09, 2013
Judy Hoffman, Erik Rodner, Jeff Donahue, Trevor Darrell, Kate Saenko

We present an algorithm that learns representations which explicitly compensate for domain mismatch and which can be efficiently realized as linear classifiers. Specifically, we form a linear transformation that maps features from the target (test) domain to the source (training) domain as part of training the classifier. We optimize both the transformation and classifier parameters jointly, and introduce an efficient cost function based on misclassification loss. Our method combines several features previously unavailable in a single algorithm: multi-class adaptation through representation learning, ability to map across heterogeneous feature spaces, and scalability to large datasets. We present experiments on several image datasets that demonstrate improved accuracy and computational advantages compared to previous approaches.

* ICLR 2013 

  Click for Model/Code and Paper
Neither Quick Nor Proper -- Evaluation of QuickProp for Learning Deep Neural Networks

Jun 15, 2016
Clemens-Alexander Brust, Sven Sickert, Marcel Simon, Erik Rodner, Joachim Denzler

Neural networks and especially convolutional neural networks are of great interest in current computer vision research. However, many techniques, extensions, and modifications have been published in the past, which are not yet used by current approaches. In this paper, we study the application of a method called QuickProp for training of deep neural networks. In particular, we apply QuickProp during learning and testing of fully convolutional networks for the task of semantic segmentation. We compare QuickProp empirically with gradient descent, which is the current standard method. Experiments suggest that QuickProp can not compete with standard gradient descent techniques for complex computer vision tasks like semantic segmentation.

* Technical Report, 11 pages, 6 figures 

  Click for Model/Code and Paper
Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding

Feb 23, 2015
Clemens-Alexander Brust, Sven Sickert, Marcel Simon, Erik Rodner, Joachim Denzler

Classifying single image patches is important in many different applications, such as road detection or scene understanding. In this paper, we present convolutional patch networks, which are convolutional networks learned to distinguish different image patches and which can be used for pixel-wise labeling. We also show how to incorporate spatial information of the patch as an input to the network, which allows for learning spatial priors for certain categories jointly with an appearance model. In particular, we focus on road detection and urban scene understanding, two application areas where we are able to achieve state-of-the-art results on the KITTI as well as on the LabelMeFacade dataset. Furthermore, our paper offers a guideline for people working in the area and desperately wandering through all the painstaking details that render training CNs on image patches extremely difficult.

* VISAPP 2015 paper 

  Click for Model/Code and Paper
Fine-grained Recognition Datasets for Biodiversity Analysis

Jul 03, 2015
Erik Rodner, Marcel Simon, Gunnar Brehm, Stephanie Pietsch, J. Wolfgang Wägele, Joachim Denzler

In the following paper, we present and discuss challenging applications for fine-grained visual classification (FGVC): biodiversity and species analysis. We not only give details about two challenging new datasets suitable for computer vision research with up to 675 highly similar classes, but also present first results with localized features using convolutional neural networks (CNN). We conclude with a list of challenging new research directions in the area of visual classification for biodiversity research.

* CVPR FGVC Workshop 2015; dataset available 

  Click for Model/Code and Paper
Maximally Divergent Intervals for Anomaly Detection

Oct 21, 2016
Erik Rodner, Björn Barz, Yanira Guanche, Milan Flach, Miguel Mahecha, Paul Bodesheim, Markus Reichstein, Joachim Denzler

We present new methods for batch anomaly detection in multivariate time series. Our methods are based on maximizing the Kullback-Leibler divergence between the data distribution within and outside an interval of the time series. An empirical analysis shows the benefits of our algorithms compared to methods that treat each time step independently from each other without optimizing with respect to all possible intervals.

* ICML Workshop on Anomaly Detection 

  Click for Model/Code and Paper
Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning

Mar 10, 2017
Marc Aubreville, Christian Knipfer, Nicolai Oetter, Christian Jaremenko, Erik Rodner, Joachim Denzler, Christopher Bohr, Helmut Neumann, Florian Stelzle, Andreas Maier

Oral Squamous Cell Carcinoma (OSCC) is a common type of cancer of the oral epithelium. Despite their high impact on mortality, sufficient screening methods for early diagnosis of OSCC often lack accuracy and thus OSCCs are mostly diagnosed at a late stage. Early detection and accurate outline estimation of OSCCs would lead to a better curative outcome and an reduction in recurrence rates after surgical treatment. Confocal Laser Endomicroscopy (CLE) records sub-surface micro-anatomical images for in vivo cell structure analysis. Recent CLE studies showed great prospects for a reliable, real-time ultrastructural imaging of OSCC in situ. We present and evaluate a novel automatic approach for a highly accurate OSCC diagnosis using deep learning technologies on CLE images. The method is compared against textural feature-based machine learning approaches that represent the current state of the art. For this work, CLE image sequences (7894 images) from patients diagnosed with OSCC were obtained from 4 specific locations in the oral cavity, including the OSCC lesion. The present approach is found to outperform the state of the art in CLE image recognition with an area under the curve (AUC) of 0.96 and a mean accuracy of 88.3% (sensitivity 86.6%, specificity 90%).

* Scientific Reports 7, Article number: 11979 (2017) 
* 12 pages, 5 figures 

  Click for Model/Code and Paper